Lumen method

Last updated

In lighting design, the lumen method, (also called zonal cavity method), is a simplified method to calculate the light level in a room. The method is a series of calculations that uses horizontal illuminance criteria to establish a uniform luminaire layout in a space. In its simplest form, the lumen method is merely the total number of lumens available in a room divided by the area of the room. [1] In order to perform this calculation, many factors, coefficients, lamp lumen data and other quantities must be gathered. Despite the scientific impression of the lumen method equations, there are inaccuracies and assumptions built into the method. Therefore, the lumen method should not typically be used as a standalone, final solution; it should be used as a tool in particularly uniform settings of lighting design if a simple, rough technique of illuminance quantification is desired. [2]

Contents

Light loss factors

Light loss factors (LLF) are the factors that need to be considered when calculating the Lumen Method. The most important factors to be considered are:

  1. Lamp Lumen Depreciation (LLD): Lamp lumen depreciation values reflect the overall performance of a lamp over its life. LLD = (mean lumens/rated lumens) Those values can be found from the lamp manufacturer data
  2. Ballast Factor (BF): Compares the ratio of light output of a lamp working by a specific ballast to the light output of the same lamp working by a standard reference ballast. The BF is given in the ballast manufacturer data.
  3. Luminaire Dirt Depreciation (LDD): It is the light loss prior to cleaning dust. LDD is estimated from tables in IESNA Lighting handbook.
  4. Room Surface Dirt Depreciation (RSDD): This value accounts for dirt or dust that accumulates on all of the room surfaces — especially on the upper walls and ceiling. RSDD is also estimated from handbook tables.

The product of all these factors is the light loss factor (LLF) which then is used in the Average Illuminance equation.

Method

A step-by-step guide is given in textbooks and the IESNA Lighting Handbook. [3]

The lumen method in brief consists of calculation of the "cavity ratios" of the upper, middle, and lower volumes of the space to be lighted. The lower cavity is from the floor to the working height, the upper cavity is from the lower edge of the luminaires to the ceiling, and the middle cavity is the volume between these planes.

The effective reflectance of ceiling, floor, and walls are estimated from tabular data. A coefficient of utilization, representing the fraction of light that is directed to the working plane, is supplied by manufacturers for each luminaire design for the various calculated room cavity ratios.

Some of the light produced by the lamps is lost due to non-ideal lamp operating conditions, dirt on the luminaires, dirt on the room surfaces. A light loss factor is calculated for all these, based on tabulated empirical factors.

Given the usual lighting problem of obtaining an average lighting level at the working plane, the number of luminaires can be calculated based on the effective amount of useful light that each luminaire has been calculated to emit [4] .

Since the zonal cavity method only gives an average lighting level, manufacturers tabulate recommended spacing to mounting height ratios that must not be exceeded if uniform illumination is desired.

Usage

The lumen method can be manipulated to solve for a particular variable. This is valuable because certain numbers are needed at different times in the design process. “Number of luminaires” is important because this number can be used to estimate costs and layout the spacing of luminaires in a computer lighting calculation program (Steffy 2002).

Variables

The CU value should be obtained by the manufacturer of the luminaire which is to be evaluated. In order to determine the CU on the manufacturer's table, a room cavity ratio (RCR) must be used. Also, the reflectance of the ceiling, walls and floor must be known.

RCR = 5 x (room height) x (room width + room length) / [(room width) x (room length)] [5]

Lumens per lamp should be obtained from the lamp manufacturer.

Light loss factors can be calculated using methods in the IESNA handbook. Sometimes, individual companies have their own rule of thumb for Light Loss Factors. The ballast factor can be obtained from the ballast manufacturer.

Related Research Articles

<span class="mw-page-title-main">Daylighting (architecture)</span> Practice of placing openings and reflective surfaces so that sunlight can provide internal lighting

Daylighting is the practice of placing windows, skylights, other openings, and reflective surfaces so that direct or indirect sunlight can provide effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating. Artificial lighting energy use can be reduced by simply installing fewer electric lights where daylight is present or by automatically dimming or switching off electric lights in response to the presence of daylight – a process known as daylight harvesting.

<span class="mw-page-title-main">Lux</span> SI derived unit of illuminance

The lux is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a model of human visual brightness perception, standardized by the CIE and ISO. In English, "lux" is used as both the singular and plural form. The word is derived from the Latin word for "light", lux.

<span class="mw-page-title-main">Lighting</span> Deliberate use of light to achieve practical or aesthetic effects

Lighting or illumination is the deliberate use of light to achieve practical or aesthetic effects. Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight. Daylighting is sometimes used as the main source of light during daytime in buildings. This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings. Proper lighting can enhance task performance, improve the appearance of an area, or have positive psychological effects on occupants.

<span class="mw-page-title-main">Photometry (optics)</span> Science of the measurement of visible light

Photometry is a branch of science that deals with the measurement of light in terms of its perceived brightness to the human eye. It is concerned with quantifying the amount of light that is emitted, transmitted, or received by an object or a system.

<span class="mw-page-title-main">Foot-candle</span> Unit of illuminance

A foot-candle is a non-SI unit of illuminance or light intensity. The foot-candle is defined as one lumen per square foot. This unit is commonly used in lighting layouts in parts of the world where United States customary units are used, mainly the United States. Nearly all of the world uses the corresponding SI derived unit lux, defined as one lumen per square meter.

<span class="mw-page-title-main">Compact fluorescent lamp</span> Fluorescent lamps with folded tubes, often with built-in ballast

A compact fluorescent lamp (CFL), also called compact fluorescent light, energy-saving light and compact fluorescent tube, is a fluorescent lamp designed to replace an incandescent light bulb; some types fit into light fixtures designed for incandescent bulbs. The lamps use a tube that is curved or folded to fit into the space of an incandescent bulb, and a compact electronic ballast in the base of the lamp.

<span class="mw-page-title-main">Emergency light</span> Backup light source used in power outages

An emergency light is a battery-backed lighting device that switches on automatically when a building experiences a power outage.

<span class="mw-page-title-main">Architectural lighting design</span> Field within architecture, interior design and electrical engineering

Architectural lighting design is a field of work or study that is concerned with the design of lighting systems within the built environment, both interior and exterior. It can include manipulation and design of both daylight and electric light or both, to serve human needs.

<span class="mw-page-title-main">Electrical ballast</span> Device to limit the current in lamps

An electrical ballast is a device placed in series with a load to limit the amount of current in an electrical circuit.

<span class="mw-page-title-main">Light fixture</span> Electrical device with an electric lamp

A light fixture, light fitting, or luminaire is an electrical lighting device containing one or more light sources, such as lamps, and all the accessory components required for its operation to provide illumination to the environment. All light fixtures have a fixture body and one or more lamps. The lamps may be in sockets for easy replacement—or, in the case of some LED fixtures, hard-wired in place.

<span class="mw-page-title-main">Energy conversion efficiency</span> Ratio between the useful output and the input of a machine

Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1.

<span class="mw-page-title-main">Grow light</span> Lighting to aid plant growth

A grow light is an electric light to help plants grow. Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour temperatures and spectral outputs from the grow light, as well as varying the intensity of the lamps. Depending on the type of plant being cultivated, the stage of cultivation, and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and color temperature are desirable for use with specific plants and time periods.

<span class="mw-page-title-main">LED lamp</span> Electric light that produces light using LEDs

An LED lamp or LED light is an electric light that produces light using light-emitting diodes (LEDs). LED lamps are significantly more energy-efficient than equivalent incandescent lamps and fluorescent lamps. The most efficient commercially available LED lamps have efficiencies exceeding 200 lumens per watt (lm/W) and convert more than half the input power into light. Commercial LED lamps have a lifespan several times longer than both incandescent and fluorescent lamps.

Often task lighting refers to increasing illuminance to better accomplish a specific activity. However, the illuminance level is not the only factor governing visibility. Contrast is also important, and a poorly positioned light source may cause contrast reduction, resulting in loss of visibility. The most important purpose of task lighting in the office is not increasing illuminance, but improving contrast. General lighting can be reduced because task lighting provides focused light where needed.

<span class="mw-page-title-main">Surgical lighting</span>

A surgical light – also referred to as an operating light or surgical lighthead – is a medical device intended to assist medical personnel during a surgical procedure by illuminating a local area or cavity of the patient. A combination of several surgical lights is often referred to as a “surgical light system”.

<span class="mw-page-title-main">Plasma lamp</span> Type of electrodeless gas-discharge lamp

Plasma lamps are a type of electrodeless gas-discharge lamp energized by radio frequency (RF) power. They are distinct from the novelty plasma lamps that were popular in the 1980s.

<span class="mw-page-title-main">Daylight factor</span>

In architecture, a daylight factor (DF) is the ratio of the light level inside a structure to the light level outside the structure. It is defined as:

Lumen maintenance is the most useful gauge to determine the lifetime or useful light output rating of an LED light source. Unlike traditional light sources such as incandescent lamps, LEDs rarely fail outright and instead continue to emit light, albeit at slowly diminishing rate over time. Lumen maintenance is the luminous flux remaining at any selected elapsed operating time. Lumen depreciation is the luminous flux lost over time, and thus the complement of lumen maintenance.

<span class="mw-page-title-main">LED tube</span>

LED tube is a type of LED lamp used in fluorescent tube luminaires with G5 and G13 bases to replace traditional fluorescent tubes. As compared to fluorescent tubes, the most important advantages of LED tubes are energy efficiency and long service life. LED tubes are sometimes also referred to as ‘LED fluorescent tubes’.

Climate based daylight modelling (CBDM) also known as dynamic daylight metrics is a calculation methodology first developed in the late 1990s to assess daylight quality and quantity. It is used by Building Design engineers and architects to predict luminance and/or illuminance within buildings using standardised sun and sky condition climate data for a given geographical location. It is a different design metric to Daylight factors which only considers the ratio of the light level inside a structure to the light level outside the structure from an overcast sky. With CBDM, if used considerately, the facade design of a building can be optimised to maximise useful daylight whilst excluding excessive daylight, which otherwise might cause issues with glare, visual discomfort, and/or solar gains which can cause thermal comfort issues. At the same time reducing reliance and operation of artificial lighting. CBDM calculations are calculated within Building simulation modelling software tools for each and every hour of the year, or sometimes for smaller increments, which allows for daily and seasonal profiles to be tested and optimised

References

  1. "Light Calc". Glossary. Archived from the original on 2008-03-16. Retrieved 2008-03-20.
  2. Steffy, LC, IES, FIALD, Gary 1963. Architectural Lighting Design, 2nd edition John Wiley & Sons, Inc., New York
  3. Rea, PH. D., FIES, Mark S., Illuminating Engineering Society of North America (2000), "The IESNA Lighting Handbook", 9th edition, 8-11 to 8-14
  4. "What Are Different Lighting Distribution Types?". 2024-02-02. Retrieved 2024-04-21.
  5. Hughes, S. David (1988), "Electrical Systems in Buildings", 150, Delmar Publishers Inc