MEDINA

Last updated
MEDINA
Developer T-Systems
Source model Closed source
Latest release 9.0.1.2
Marketing targetSimulation tasks in Automotive, Aerospace & Defence, Energy, Manufacturing Industries
License Proprietary commercial software
Official website http://servicenet.t-systems.com/medina

MEDINA (short for Model EDitor Interactive for Numerical Simulation Analysis) is a universal pre-/postprocessor for finite element analysis. [1] [2] The development of MEDINA started in the early 1990s at Daimler-Benz AG and was proceeded at debis Systemhaus. Since 2001 the support and the development of MEDINA takes place by T-Systems International GmbH. The current release is MEDINA Rel. 9.0.1.2 [3]

Contents

Architecture and interfaces

MEDINA was designed as general purpose pre-/postprocessor for various areas of finite element analysis supporting most of the common CAD-formats, solvers and operating systems.

CAD-formats supported

Currently, the following CAD-formats are supported by MEDINA:

Further CAD-formats can be supported using the solution for 3D data conversion of T-Systems called COM/FOX.

FEA interfaces supported

In the current release, particularly the following solvers are supported by MEDINA:

OS and hardware supported

In the current release, MEDINA is running under the following operating systems and hardware architectures:

FE-analysis in MEDINA

Particularly, MEDINA is being used for the following tasks of FE-analysis:

MEDINA consists of two modules:

In the preprocessor all steps are taken before the computation can start, i.e.:

In the postprocessor all steps are taken after the computation of the primary data of the solver is finished, e.g.:

Characteristics

MEDINA was designed to support complex simulation tasks and huge FE models—found typically in automotive and aerospace industries—with high performance. [4]

Important design elements to achieve high performance are parts structures and connector elements.

Within the process step of the so-called "model assembly" the single FE-components (parts structures and connector elements) are merged to the complex comprehensive FE-model representing complex products like vehicles, aircraft, etc.

Single process steps or complete process chains can be automated by protocol and script techniques. Dynamic commands enable to integrate client specific plug-ins within the standard functionality of MEDINA.

Target groups/user groups

Due to the development roots of MEDINA and the included functionalities for the analysis of huge FE-models MEDINA is a widely used pre-/postprocessor for FE analysis especially in automotive industries.

Furthermore, MEDINA is used in aerospace, manufacturing industries, engineering service providers and universities.

Related Research Articles

Computer-aided design Constructing a product by means of computer

Computer-aided design (CAD) is the use of computers to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The term CADD is also used.

Creo Elements/Pro, or Creo Elements/Direct Modeling, formerly known, together with Creo Parametric, as Pro/ENGINEER and Wildfire, is a solid modeling or CAD, CAM, CAE, and associative 3D modeling application, running on Microsoft Windows.

Computer-aided engineering broad usage of computer software to aid in engineering analysis tasks

Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering analysis tasks. It includes finite element analysis (FEA), computational fluid dynamics (CFD), multibody dynamics (MBD), durability and optimization. It is included with computer-aided design (CAD) and computer-aided manufacturing (CAM) in the collective abbreviation "CAx".

Product lifecycle a period of time of a product being from inception, through engineering design and manufacture, to service and disposal

In industry, product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from inception, through engineering design and manufacture, to service and disposal of manufactured products. PLM integrates people, data, processes and business systems and provides a product information backbone for companies and their extended enterprise.

ISO 10303 is an ISO standard for the computer-interpretable representation and exchange of product manufacturing information. Its official title is: Automation systems and integration — Product data representation and exchange. It is known informally as "STEP", which stands for "Standard for the Exchange of Product model data". ISO 10303 can represent 3D objects in Computer-aided design (CAD) and related information.

NASTRAN is a finite element analysis (FEA) program that was originally developed for NASA in the late 1960s under United States government funding for the aerospace industry. The MacNeal-Schwendler Corporation (MSC) was one of the principal and original developers of the publicly available NASTRAN code. NASTRAN source code is integrated in a number of different software packages, which are distributed by a range of companies.

Dassault Systèmes Simulia Corp. is an computer-aided engineering (CAE) vendor. Formerly known as Abaqus Inc. and previously Hibbitt, Karlsson & Sorensen, Inc., (HKS), the company was founded in 1978 by David Hibbitt, Bengt Karlsson and Paul Sorensen, and has its headquarters in Providence, Rhode Island.

MADYMO is a software package for the analysis of occupant safety systems in the automotive and transport industries. The software was developed by the Netherlands Organization for Applied Scientific Research (TNO) and is owned and distributed by TASS International Software and Services, headquartered in Helmond, the Netherlands. By one author's estimation, "MADYMO is probably the most widely used multi-body system program for occupant safety systems."

Solid Edge computer-aided 3D modelling, rendering and assembly software

Solid Edge is a 3D CAD, parametric feature and synchronous technology solid modeling software. It runs on Microsoft Windows and provides solid modeling, assembly modelling and 2D orthographic view functionality for mechanical designers. Through third party applications it has links to many other Product Lifecycle Management (PLM) technologies.

Femap is an engineering analysis program sold by Siemens PLM Software that is used to build finite element models of complex engineering problems ("pre-processing") and view solution results ("post-processing"). It runs on Microsoft Windows and provides CAD import, modeling and meshing tools to create a finite element model, as well as postprocessing functionality that allows mechanical engineers to interpret analysis results. The finite element method allows engineers to virtually model components, assemblies, or systems to determine behavior under a given set of boundary conditions, and is typically used in the design process to reduce costly prototyping and testing, evaluate differing designs and materials, and for structural optimization to reduce weight.

T-FLEX CAD

T-FLEX CAD (T-FLEX) is a Parasolid-based parametric CAD software application for 3D solid modeling and 2D design and drafting, developed and sold by Russia-based software company Top Systems. T-FLEX CAD is written for Microsoft Windows XP, Vista, and 7 32-bit and 64-bit operating systems, and is distributed in various languages.

Finite element method Numerical method for solving physical or engineering problems

The finite element method (FEM) is the most widely used method for solving problems of engineering and mathematical models. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a particular numerical method for solving partial differential equations in two or three space variables. To solve a problem, the FEM subdivides a large system into smaller, simpler parts that are called finite elements. This is achieved by a particular space discretisation in the space dimensions, which is implemented by the construction of a mesh of the object: the numerical domain for the solution, which has a finite number of points. The finite element method formulation of a boundary value problem finally results in a system of algebraic equations. The method approximates the unknown function over the domain. The simple equations that model these finite elements are then assembled into a larger system of equations that models the entire problem. The FEM then uses variational methods from the calculus of variations to approximate a solution by minimizing an associated error function.

Z88 is a software package for the finite element method (FEM) and topology optimization. A team led by Frank Rieg at the University of Bayreuth started development in 1985 and now the software is used by several universities, as well as small and medium-sized enterprises. Z88 is capable of calculating two and three dimensional element types with a linear approach. The software package contains several solvers and two post-processors and is available for Microsoft Windows, Mac OS X and Unix/Linux computers in 32-bit and 64-bit versions. Benchmark tests conducted in 2007 showed a performance on par with commercial software.

ScanIP 3D image processing and model generation software program by Synopsys Inc.

Synopsys Simpleware ScanIP is a 3D image processing and model generation software program developed by Synopsys Inc. to visualise, analyse, quantify, segment and export 3D image data from magnetic resonance imaging (MRI), computed tomography (CT), microtomography and other modalities for computer-aided design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and 3D printing. The software is used in the life sciences, materials science, nondestructive testing, reverse engineering and petrophysics.

StressCheck

StressCheck is a finite element analysis software product developed and supported by ESRD, Inc. of St. Louis, Missouri. It is one of the first commercially available FEA products to utilize the p-version of the finite element method and support the requirements of Simulation Governance.

FEMtools is a multi-functional, cross-platform and solver-independent family of CAE software programs providing analysis and scripting solutions for many different types of applications. The program is developed, supported and licensed by Dynamic Design Solutions ("DDS") NV.

C3D Toolkit software for geometric modeling

C3D Toolkit is a geometric modeling kit originally developed by ASCON Group, now by C3D Labs, using C++ and written in Visual Studio. C3D Toolkit responsible for constructing and editing geometric models. It can be licensed by other companies for use in their 3D computer graphics software products. The most widely known software in which C3D Toolkit is typically used are computer aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) systems.

ACTRAN is a finite element-based computer aided engineering software modeling the acoustic behavior of mechanical systems and parts. Actran is being developed by Free Field Technologies, a Belgian software company founded in 1998 by Jean-Pierre Coyette and Jean-Louis Migeot. Free Field Technologies is a wholly owned subsidiary of the MSC Software Corporation since 2011.

FEATool Multiphysics

FEATool Multiphysics is a physics, finite element analysis (FEA), and PDE simulation toolbox. FEATool Multiphysics features the ability to model fully coupled heat transfer, fluid dynamics, chemical engineering, structural mechanics, fluid-structure interaction (FSI), electromagnetics, as well as user-defined and custom PDE problems in 1D, 2D (axisymmetry), or 3D, all within a simple graphical user interface (GUI) or optionally as convenient script files. Having specifically been designed to have a low learning curve and to be able to be used without requiring reading documentation, FEATool has been employed and used in academic research, teaching, and industrial engineering simulation contexts.

References

  1. T-Systems. "Official Product Information about MEDINA". T-Systems International GmbH. Archived from the original on 2011-08-27. Retrieved 2011-02-17.
  2. M. Westhäußer (2003). "Wie kann der Berechnungs-Prozess für Gesamtfahrzeuge verbessert werden?". FEM-, CFD-, und MKS Simulation.
  3. T-Systems. "FEM Pre- und Postprozessing [MEDINA]". T-Systems International GmbH. Retrieved 2017-01-08.
  4. H. Kitagawa; T.B. Negretti; J.P. da Silva; K.C. Malavazi (2010). "Product Development Cycle Time Reduction through Geometry Reconstruction from a Finite Element Mesh". SAE International Technical Papers. doi:10.4271/2010-36-0320.
  5. S. Zhang (2005). "Simplified Spot Weld Model for NVH Simulations". SAE International Technical Papers. doi:10.4271/2005-01-0905.