Macropinosome

Last updated

Macropinosomes are a type of cellular compartment that form as a result of macropinocytosis.

Contents

Formation

Macropinosomes have been described to form via a wave-like mechanism [1] or via a tent-pole formation [2] both of which processes require rapid polymerisation of actin-rich structures that rise up from the cell surface before collapsing back down into a macropinosome.

Function

Macropinosomes serve primarily in the uptake of solutes from the extracellular fluid. [3] [4] Once inside the cell, macropinosomes undergo a process of maturation characterized by increasing expression of Rab7 as they progress through the endocytic pathway, until they fuse with lysosomes where the contents of the macropinosome are degraded. [5]

Regulation

PI3K and phosphoinositide phospholipase C activation have been shown to be necessary for macropinosome formation in fibroblasts. [6] Members of the SNX family have also been shown to be important in macropinosome formation. [7] Conversely, cyclic AMP has been shown to promote regurgitation from macropinosomes. [8]

Role in pathogenesis

Because the process of macropinocytosis is non-specific, many pathogens take advantage of macropinosomes to infect their target cells. In this way, pathogens internalized in macropinosomes avoid barriers and obstructions that the plasma membrane, cytoplasmic crowding and cortical cytoskeleton pose when moving deeper into the cytoplasm. [1] One example is Ebola virus, responsible for the devastating ebola virus disease, which stimulates macropinosome formation upon binding to the target cell surface. [9] Vaccinia virus (VACV), a member of poxvirus family, has also been shown to partially utilize macropinocytosis for infectious cell entry. Here, both infectious forms of VACV, mature virion (MV) and enveloped virion (EV), induce their own macropinocytosis by binding to the cell surface and triggering an actin-mediated plasma membrane protrusion that eventually collapses back onto the plasma membrane sealing the attached virion inside a macropinosome, which then goes through a maturation program that leads to core activation and genome release. [1] [10] Shiga toxin produced by enterohemorrhagic E. coli has been shown to enter target cells via macropinocytosis, causing gastrointestinal tract complications. [11] Other pathogens that have been shown to utilize this mechanism are Kaposi's sarcoma-associated herpesvirus [12] and Salmonella . [13]

Related Research Articles

In biology, caveolae, which are a special type of lipid raft, are small invaginations of the plasma membrane in many vertebrate cell types, especially in endothelial cells, adipocytes and embryonic notochord cells. They were originally discovered by E. Yamada in 1955.

<i>Filoviridae</i> Family of viruses in the order Mononegavirales

Filoviridae is a family of single-stranded negative-sense RNA viruses in the order Mononegavirales. Two members of the family that are commonly known are Ebola virus and Marburg virus. Both viruses, and some of their lesser known relatives, cause severe disease in humans and nonhuman primates in the form of viral hemorrhagic fevers.

<i>Ebolavirus</i> Genus of viruses

The genus Ebolavirus is a virological taxon included in the family Filoviridae, order Mononegavirales. The members of this genus are called ebolaviruses, and encode their genome in the form of single-stranded negative-sense RNA. The six known virus species are named for the region where each was originally identified: Bundibugyo ebolavirus, Reston ebolavirus, Sudan ebolavirus, Taï Forest ebolavirus, Zaire ebolavirus, and Bombali ebolavirus. The last is the most recent species to be named and was isolated from Angolan free-tailed bats in Sierra Leone.

Granzymes are serine proteases released by cytoplasmic granules within cytotoxic T cells and natural killer (NK) cells. They induce programmed cell death (apoptosis) in the target cell, thus eliminating cells that have become cancerous or are infected with viruses or bacteria. Granzymes also kill bacteria and inhibit viral replication. In NK cells and T cells, granzymes are packaged in cytotoxic granules along with perforin. Granzymes can also be detected in the rough endoplasmic reticulum, golgi complex, and the trans-golgi reticulum. The contents of the cytotoxic granules function to permit entry of the granzymes into the target cell cytosol. The granules are released into an immune synapse formed with a target cell, where perforin mediates the delivery of the granzymes into endosomes in the target cell, and finally into the target cell cytosol. Granzymes are part of the serine esterase family. They are closely related to other immune serine proteases expressed by innate immune cells, such as neutrophil elastase and cathepsin G.

Viral hemorrhagic fever Type of illnesses

Viral hemorrhagic fevers (VHFs) are a diverse group of animal and human illnesses in which fever and hemorrhage are caused by a viral infection. VHFs may be caused by five distinct families of RNA viruses: the families Filoviridae, Flaviviridae, Rhabdoviridae, and several member families of the Bunyavirales order such as Arenaviridae, and Hantaviridae. All types of VHF are characterized by fever and bleeding disorders and all can progress to high fever, shock and death in many cases. Some of the VHF agents cause relatively mild illnesses, such as the Scandinavian nephropathia epidemica, while others, such as Ebola virus, can cause severe, life-threatening disease.

Phagosome

In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).

Podosome

Podosomes are conical, actin-rich structures found on the outer surface of the plasma membrane of animal cells. Their size ranges from approximately 0.5 µm to 2.0 µm in diameter. While usually situated on the periphery of the cellular membrane, these unique structures display a polarized pattern of distribution in migrating cells, situating at the front border between the lamellipodium and lamellum. Their primary purpose is connected to cellular motility and invasion; therefore, they serve as both sites of attachment and degradation along the extracellular matrix. Many different specialized cells exhibit these dynamic structures such as invasive cancer cells, osteoclasts, vascular smooth muscle cells, endothelial cells, and certain immune cells like macrophages and dendritic cells.

Marginal zone

The marginal zone is the region at the interface between the non-lymphoid red pulp and the lymphoid white-pulp of the spleen.

Simian foamy virus (SFV) is a species of the genus Spumavirus that belongs to the family of Retroviridae. It has been identified in a wide variety of primates, including prosimians, New World and Old World monkeys, as well as apes, and each species has been shown to harbor a unique (species-specific) strain of SFV, including African green monkeys, baboons, macaques, and chimpanzees. As it is related to the more well-known retrovirus human immunodeficiency virus (HIV), its discovery in primates has led to some speculation that HIV may have been spread to the human species in Africa through contact with blood from apes, monkeys, and other primates, most likely through bushmeat-hunting practices.

Foam cell Fat-laden M2 macrophages seen in atherosclerosis

Foam cells, also called lipid-laden macrophages, are a type of cell that contain cholesterol. These can form a plaque that can lead to atherosclerosis and trigger heart attacks and stroke.

<i>Molluscum contagiosum virus</i> Species of virus

Molluscum contagiosum virus (MCV) is a DNA poxvirus that causes the human skin infection molluscum contagiosum. Molluscum contagiosum affects about 200,000 people a year, about 1% of all diagnosed skin diseases. Diagnosis is based on the size and shape of the skin lesions and can be confirmed with a biopsy, as the virus cannot be routinely cultured. Molluscum contagiosum virus is the only species in the genus Molluscipoxvirus. MCV is a member of the subfamily Chordopoxvirinae of family Poxviridae. Other commonly known viruses that reside in the subfamily Chordopoxvirinae are variola virus and monkeypox virus.

Tetherin

Tetherin, also known as bone marrow stromal antigen 2, is a lipid raft associated protein that in humans is encoded by the BST2 gene. In addition, tetherin has been designated as CD317. This protein is constitutively expressed in mature B cells, plasma cells and plasmacytoid dendritic cells, and in many other cells, it is only expressed as a response to stimuli from IFN pathway.

Lipid droplets, also referred to as lipid bodies, oil bodies or adiposomes, are lipid-rich cellular organelles that regulate the storage and hydrolysis of neutral lipids and are found largely in the adipose tissue. They also serve as a reservoir for cholesterol and acyl-glycerols for membrane formation and maintenance. Lipid droplets are found in all eukaryotic organisms and store a large portion of lipids in mammalian adipocytes. Initially, these lipid droplets were considered to merely serve as fat depots, but since the discovery in the 1990s of proteins in the lipid droplet coat that regulate lipid droplet dynamics and lipid metabolism, lipid droplets are seen as highly dynamic organelles that play a very important role in the regulation of intracellular lipid storage and lipid metabolism. The role of lipid droplets outside of lipid and cholesterol storage has recently begun to be elucidated and includes a close association to inflammatory responses through the synthesis and metabolism of eicosanoids and to metabolic disorders such as obesity, cancer, and atherosclerosis. In non-adipocytes, lipid droplets are known to play a role in protection from lipotoxicity by storage of fatty acids in the form of neutral triacylglycerol, which consists of three fatty acids bound to glycerol. Alternatively, fatty acids can be converted to lipid intermediates like diacylglycerol (DAG), ceramides and fatty acyl-CoAs. These lipid intermediates can impair insulin signaling, which is referred to as lipid-induced insulin resistance and lipotoxicity. Lipid droplets also serve as platforms for protein binding and degradation. Finally, lipid droplets are known to be exploited by pathogens such as the hepatitis C virus, the dengue virus and Chlamydia trachomatis among others.

VP40

In molecular biology, VP40 is the name of a viral matrix protein. Most commonly it is found in the Ebola virus (EBOV), a type of non-segmented, negative-strand RNA virus. Ebola virus causes a severe and often fatal haemorrhagic fever in humans, known as Ebola virus disease. The virus matrix protein VP40 is a major structural protein that plays a central role in virus assembly and budding at the plasma membrane of infected cells. VP40 proteins work by associating with cellular membranes, interacting with the cytoplasmic tails of glycoproteins and binding to the ribonucleoprotein complex.

<i>Zaire ebolavirus</i> Species of virus affecting humans and animals

Zaire ebolavirus, more commonly known as Ebola virus, is one of six known species within the genus Ebolavirus. Four of the six known ebolaviruses, including EBOV, cause a severe and often fatal hemorrhagic fever in humans and other mammals, known as Ebola virus disease (EVD). Ebola virus has caused the majority of human deaths from EVD, and was the cause of the 2013–2016 epidemic in western Africa, which resulted in at least 28,646 suspected cases and 11,323 confirmed deaths.

Ebola viral protein 24 (eVP24) is considered a multifunctional secondary matrix protein present in viral particles. The broad roles eVP24 performs involve the formation of fully functional and infectious viral particles, promotion of filamentous nucleocapsid formation, mediation of host responses to infection, and suppression of the host innate immune system. It has been noted that eVP24 function can overlap with that of two other viral proteins; eVP40 matrix protein which functions in virus budding, and eVP35 which is also associated with immune suppression.

Agnoprotein InterPro Family

Agnoprotein is a protein expressed by some members of the polyomavirus family from a gene called the agnogene. Polyomaviruses in which it occurs include two human polyomaviruses associated with disease, BK virus and JC virus, as well as the simian polyomavirus SV40.

SNX8 Protein

The SNX8 is a sorting nexin protein involved in intracellular molecular traffic from the early endosomes to the TGN. It is suggested that it acts as an adaptor protein in events related to immune response and cholesterol regulation, for example. As a protein of the SNXs family, the SNX8 is formed of 465 aminoacids and presents a BAR-domain and a PX-domain which are very relevant in relation to its functions. Furthermore, SNX8 study is motivated by its medical significance in relation to diseases such as Alzheimer's Disease, cancer, neurodevelopmental malformations and to its role in fighting against viral infections.

Jean Gruenberg Swiss biologist

Jean Gruenberg is a Swiss biologist, and a professor at the University of Geneva. His research in the fields of cell biology and biochemistry has significantly contributed to a better understanding of the molecular mechanisms involved in the intracellular traffic within eukaryotic cells, more especially in the endolysosomal pathway.

References

  1. 1 2 3 Mercer, Jason; Helenius, Ari (2009). "Virus entry by macropinocytosis". Nature Cell Biology. 11 (5): 510–520. doi:10.1038/ncb0509-510. ISSN   1465-7392. PMID   19404330. S2CID   205286378.
  2. Condon, Nicholas D.; Heddleston, John M.; Chew, Teng-Leong; Luo, Lin; McPherson, Peter S.; Ioannou, Maria S.; Hodgson, Louis; Stow, Jennifer L.; Wall, Adam A. (2018-08-27). "Macropinosome formation by tent pole ruffling in macrophages". J Cell Biol. 217 (11): 3873–3885. doi:10.1083/jcb.201804137. ISSN   0021-9525. PMC   6219714 . PMID   30150290.
  3. Racoosin, E. L.; Swanson, J. A. (1992). "M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages". Journal of Cell Science. 102 (4): 867–880. doi:10.1242/jcs.102.4.867. PMID   1429898.
  4. Hacker, U.; Albrecht, R.; Maniak, M. (1997). "Fluid-phase uptake by macropinocytosis in Dictyostelium". Journal of Cell Science. 110 (2): 105–112. doi:10.1242/jcs.110.2.105. PMID   9044041.
  5. Racoosin, E. L.; Swanson, J. A. (1993). "Macropinosome maturation and fusion with tubular lysosomes in macrophages". The Journal of Cell Biology. 121 (5): 1011–1020. doi:10.1083/jcb.121.5.1011. PMC   2119679 . PMID   8099075.
  6. Amyere, M.; Payrastre, B.; Krause, U.; Van Der Smissen, P.; Veithen, A.; Courtoy, P. J. (2000). "Constitutive Macropinocytosis in Oncogene-transformed Fibroblasts Depends on Sequential Permanent Activation of Phosphoinositide 3-Kinase and Phospholipase C". Molecular Biology of the Cell. 11 (10): 3453–3467. doi:10.1091/mbc.11.10.3453. PMC   15006 . PMID   11029048.
  7. Wang, J. T. H.; Kerr, M. C.; Karunaratne, S.; Jeanes, A.; Yap, A. S.; Teasdale, R. D. (2010). Caplan, Steve H. (ed.). "The SNX-PX-BAR Family in Macropinocytosis: The Regulation of Macropinosome Formation by SNX-PX-BAR Proteins". PLOS ONE. 5 (10): e13763. Bibcode:2010PLoSO...513763W. doi: 10.1371/journal.pone.0013763 . PMC   2966440 . PMID   21048941.
  8. Veithen, A.; Amyere, M.; Van Der Smissen, P.; Cupers, P.; Courtoy, P. J. (1998). "Regulation of macropinocytosis in v-Src-transformed fibroblasts: Cyclic AMP selectively promotes regurgitation of macropinosomes". Journal of Cell Science. 111 (16): 2329–2335. doi:10.1242/jcs.111.16.2329. PMID   9683628.
  9. Saeed, M. F.; Kolokoltsov, A. A.; Albrecht, T.; Davey, R. A. (2010). Basler, Christopher F. (ed.). "Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes". PLOS Pathogens. 6 (9): e1001110. doi:10.1371/journal.ppat.1001110. PMC   2940741 . PMID   20862315.
  10. Rizopoulos Z, Balistreri G, Kilcher S, Martin CK, Syedbasha M, Helenius A, Mercer J. Vaccinia Virus Infection Requires Maturation of Macropinosomes. Traffic. 2015 Aug;16(8):814-31. doi: 10.1111/tra.12290. Epub 2015 May 6. PMID: 25869659; PMCID: PMC4973667.
  11. Lukyanenko, V.; Malyukova, I.; Hubbard, A.; Delannoy, M.; Boedeker, E.; Zhu, C.; Cebotaru, L.; Kovbasnjuk, O. (2011). "Enterohemorrhagic Escherichia coli infection stimulates Shiga toxin 1 macropinocytosis and transcytosis across intestinal epithelial cells". AJP: Cell Physiology. 301 (5): C1140–C1149. doi:10.1152/ajpcell.00036.2011. PMC   3213915 . PMID   21832249.
  12. Valiya Veettil, M.; Sadagopan, S.; Kerur, N.; Chakraborty, S.; Chandran, B. (2010). Früh, Klaus (ed.). "Interaction of c-Cbl with Myosin IIA Regulates Bleb Associated Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus". PLOS Pathogens. 6 (12): e1001238. doi:10.1371/journal.ppat.1001238. PMC   3009604 . PMID   21203488.
  13. Kerr, M. C.; Wang, J. T. H.; Castro, N. A.; Hamilton, N. A.; Town, L.; Brown, D. L.; Meunier, F. A.; Brown, N. F.; Stow, J. L.; Teasdale, R. D. (2010). "Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella". The EMBO Journal. 29 (8): 1331–1347. doi:10.1038/emboj.2010.28. PMC   2868569 . PMID   20300065.