Mandrel wrapping

Last updated

In multimode fiber optics, mandrel wrapping is a technique used to preferentially attenuate high-order mode power of a propagating optical signal. Consequently, if the fibre is propagating substantial energy in affected modes, the modal distribution will be changed.

Contents

A cylindrical rod wrap consists of a specified number turns of fiber on a mandrel of specified size, depending on the fibre characteristics and the desired modal distribution. It has application in optical transmission performance tests, to create a defined mode power distribution or to prevent multimode propagation in single mode fibre. If the launch fibre is fully filled ahead of the mandrel wrap, the higher-order modes will be stripped off, leaving only lower-order modes. If the launch fibre is underfilled, for example as a consequence of being energized by a laser diode or edge-emitting LED, there will be no effect on the mode power distribution or loss measurements.

In multimode fibre, mandrel wrapping is used to eliminate the effect of "transient loss", the tendency of high order modes to experience higher loss than lower order modes. Numerical addition (in decibels) of the measured loss of multiple fibre segments and/or components overestimates the loss of the concatenated set if each segment or component has been measured with a full mode power distribution.

In single mode optical fibre measurements, it is used to enforce true single mode propagation at wavelengths near or below the theoretical cutoff wavelength, at which substantial power can exist in a higher order mode group. In this use, it is commonly termed a High Order Mode Filter (HOMF).

Ultimately, the effect of mandrel wrapping on optical measurements depends on the propagating mode power distribution. An additional loss mechanism has no effect unless power is present in the affected modes.

Principle of operation

The effect of physically bending an optical fibre around a cylindrical form is to slightly modify the effective refractive index in the curved region, which locally reduces the effective mode volume of the fibre. This causes optical power in the highest order modes to become unguided, or so weakly guided as to be released into an unbound state, absorbed by the fiber coating or completely ejected from the fibre. The practical effect of mandrel wrapping is to attenuate optical power propagating in the highest order modes. Lower order modes are unaffected, experiencing neither increased loss nor conversion into other modes (mode mixing).

Determination of appropriate mandrel wrap conditions

The mandrel diameter and number of turns are chosen to eliminate certain modes in a reproducible way. It is empirically observed that more than 5 full 360 degree wraps creates little additional loss, so 3 to 5 turns are commonly specified. The mandrel diameter affects how far into the mode volume the modal unbinding occurs. Experimentally, one plots the transmitted power from a wrapped fibre into which a uniform modal power distribution has been excited, as a function of mandrel diameter, maintaining a constant number of turns. This reveals step-like reductions in transmitted power as the diameter decreases, where each step is the point at which the mandrel is beginning to affect the next-lower mode group. For best measurement reproducibility, one would select a diameter that is not near such a transition, although this may not be possible if measurements must be performed over a range of wavelengths. Total mode volume in a fiber is a function of wavelength, so the mandrel diameter at which the mode group transitions occur will change with wavelength.

See also

PD-icon.svg This article incorporates  public domain material from the General Services Administration document "Federal Standard 1037C" .

Related Research Articles

In physics, attenuation or, in some contexts, extinction is the gradual loss of flux intensity through a medium. For instance, dark glasses attenuate sunlight, lead attenuates X-rays, and water and air attenuate both light and sound at variable attenuation rates.

In telecommunications, a cutback technique is a destructive technique for determining certain optical fiber transmission characteristics, such as attenuation and bandwidth.

In telecommunications, a mode scramblermode mixer is a device for inducing mode coupling in an optical fiber, or a device that, itself, exhibits a uniform output intensity profile independent of the input mode volume or modal excitation condition. Mode scramblers are used to provide a modal distribution that is independent of the optical source for purposes of laboratory, manufacturing, or field measurements or tests. Mode scramblers are primarily used to improve reproducibility of multimode fiber bandwidth measurements.

Optical attenuator

An optical attenuator, or fiber optic attenuator, is a device used to reduce the power level of an optical signal, either in free space or in an optical fiber. The basic types of optical attenuators are fixed, step-wise variable, and continuously variable.

Transmission medium material substance that can propagate energy waves

A transmission medium is something that can mediate the propagation of signals for the purposes of telecommunication.

Backscatter

In physics, backscatter is the reflection of waves, particles, or signals back to the direction from which they came. It is usually a diffuse reflection due to scattering, as opposed to specular reflection as from a mirror, although specular backscattering can occur at normal incidence with a surface. Backscattering has important applications in astronomy, photography, and medical ultrasonography. The opposite effect is forward scatter, e.g. when a translucent material like a cloud diffuses sunlight, giving soft light.

Photonic-crystal fiber class of optical fiber

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber, holey fiber, hole-assisted fiber, and Bragg fiber. Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

Multi-mode optical fiber

Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 100 Gbit/s. Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion.

Fiber Bragg grating

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. A fiber Bragg grating can therefore be used as an inline optical filter to block certain wavelengths, or as a wavelength-specific reflector.

The equilibrium mode [power] distribution of light travelling in an optical waveguide or fiber, is the distribution of light that is no longer changing with fibre length or with input modal excitation. This phenomenon requires both mode filtering and mode mixing to occur in the fibre to produce a state that is independent of the mode power distribution launched by the light source. At propagation distances exceeding the equilibrium length, intramodal pulse distortion increases as the square root of length.

Optical fiber Light-conducting fiber

An optical fiber is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

Double-clad fiber

Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices.

In laser science, the parameter M2, also known as the beam quality factor, represents the degree of variation of a beam from an ideal Gaussian beam. It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength. It relates the beam divergence of a laser beam to the minimum focussed spot size that can be achieved. For a single mode TEM00 (Gaussian) laser beam, M2 is exactly one.

Fiber-optic communication Method of transmitting information from one place to another by sending pulses of light through an optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared light through an optical fiber. The light forms an electromagnetic carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference are required. This type of communication can transmit voice, video, and telemetry through local area networks, computer networks, or across long distances.

Modal dispersion is a distortion mechanism occurring in multimode fibers and other waveguides, in which the signal is spread in time because the propagation velocity of the optical signal is not the same for all modes. Other names for this phenomenon include multimode distortion, multimode dispersion, modal distortion, intermodal distortion, intermodal dispersion, and intermodal delay distortion.

Fiber-optic cable cable assembly containing one or more optical fibers that are used to carry light

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable, but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable will be deployed. Different types of cable are used for different applications, for example, long distance telecommunication, or providing a high-speed data connection between different parts of a building.

Wrapping may refer to:

An optical power meter (OPM) is a device used measure the power in an optical signal. The term usually refers to a device for testing average power in fiber optic systems. Other general purpose light power measuring devices are usually called radiometers, photometers, laser power meters, light meters or lux meters.

Cladding in optical fibers is one or more layers of materials of lower refractive index, in intimate contact with a core material of higher refractive index. The cladding causes light to be confined to the core of the fiber by total internal reflection at the boundary between the two. Light propagation in the cladding is suppressed in typical fiber. Improving transmission through fibers by applying a cladding was discovered in 1953 by Dutch scientist Bram van Heel. Some fibers can support cladding modes in which light propagates in the cladding as well as the core.

In laser science, laser beam quality defines aspects of the beam illumination pattern and the merits of a particular laser beam's propagation and transformation properties. By observing and recording the beam pattern, for example, one can infer the spatial mode properties of the beam and whether or not the beam is being clipped by an obstruction; By focusing the laser beam with a lens and measuring the minimum spot size, the number of times diffraction limit or focusing quality can be computed.