Maneuvering speed

Last updated

A flight envelope diagram showing VS (Stall speed at 1G), VC (Corner/Maneuvering speed) and VD (Dive speed) F-104A flight envelope.jpg
A flight envelope diagram showing VS (Stall speed at 1G), VC (Corner/Maneuvering speed) and VD (Dive speed)
Vg diagram. Note the 1g stall speed, and the Maneuvering Speed (Corner Speed) for both positive and negative g. The maximum "never-exceed" placard dive speeds are determined for smooth air only. Vgdiagram.jpg
Vg diagram. Note the 1g stall speed, and the Maneuvering Speed (Corner Speed) for both positive and negative g. The maximum “never-exceed” placard dive speeds are determined for smooth air only.

In aviation, the maneuvering speed of an aircraft is an airspeed limitation at which the full deflection of the controls can be made at without risking structural damage. [1]

Contents

The maneuvering speed of an aircraft is shown on a cockpit placard and in the aircraft's flight manual but is not commonly shown on the aircraft's airspeed indicator.

In the context of air combat maneuvering (ACM), the maneuvering speed is also known as corner speed or cornering speed. [2]

Implications

It has been widely misunderstood that flight below maneuvering speed will provide total protection from structural failure. In response to the destruction of American Airlines Flight 587, a CFR Final Rule was issued clarifying that "flying at or below the design maneuvering speed does not allow a pilot to make multiple large control inputs in one airplane axis or single full control inputs in more than one airplane axis at a time". Such actions "may result in structural failures at any speed, including below the maneuvering speed." [3]

Design maneuvering speed VA

VA is the design maneuvering speed and is a calibrated airspeed. Maneuvering speed cannot be slower than and need not be greater than Vc. [4]

If is chosen by the manufacturer to be exactly the aircraft will stall in a nose-up pitching maneuver before the structure is subjected to its limiting aerodynamic load. However, if is selected to be greater than , the structure will be subjected to loads which exceed the limiting load unless the pilot checks the maneuver.

The maneuvering speed or maximum operating maneuvering speed depicted on a cockpit placard is calculated for the maximum weight of the aircraft. Some Pilot's Operating Handbooks also present safe speeds for weights less than the maximum.

The formula used to calculate a safe speed for a lower weight is , where VA is maneuvering speed (at maximum weight), W2 is actual weight, W1 is maximum weight. [5]

Maximum operating maneuvering speed VO

Some aircraft have a maximum operating maneuvering speed VO. Note that this is a different concept than design maneuvering speed. The concept of maximum operating maneuvering speed was introduced to the US type-certification standards for light aircraft in 1993. [1] [6] The maximum operating maneuvering speed is selected by the aircraft designer and cannot be more than , where Vs is the stalling speed of the aircraft, and n is the maximal allowed positive load factor.[ citation needed ]

See also

Related Research Articles

The Federal Aviation Regulations (FARs) are rules prescribed by the Federal Aviation Administration (FAA) governing all aviation activities in the United States. The FARs comprise Title 14 of the Code of Federal Regulations. A wide variety of activities are regulated, such as aircraft design and maintenance, typical airline flights, pilot training activities, hot-air ballooning, lighter-than-air aircraft, human-made structure heights, obstruction lighting and marking, model rocket launches, commercial space operations, model aircraft operations, unmanned aircraft systems (UAS) and kite flying. The rules are designed to promote safe aviation, protecting pilots, flight attendants, passengers and the general public from unnecessary risk.

<span class="mw-page-title-main">Stall (fluid dynamics)</span> Abrupt reduction in lift due to flow separation

In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack exceeds its critical value. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil – including its shape, size, and finish – and Reynolds number.

<span class="mw-page-title-main">Lift-to-drag ratio</span> Measure of aerodynamic efficiency

In aerodynamics, the lift-to-drag ratio is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.

<span class="mw-page-title-main">Wing loading</span> Total mass divided by area of wing

In aerodynamics, wing loading is the total weight of an aircraft or flying animal divided by the area of its wing. The stalling speed, takeoff speed and landing speed of an aircraft are partly determined by its wing loading.

<span class="mw-page-title-main">Airspeed</span> Speed of an aircraft relative to the surrounding air

In aviation, airspeed is the speed of an aircraft relative to the air it is flying through. It is difficult to measure the exact airspeed of the aircraft, but other measures of airspeed, such as indicated airspeed and Mach number give useful information about the capabilities and limitations of airplane performance. The common measures of airspeed are:

<span class="mw-page-title-main">Indicated airspeed</span> Displayed on the airspeed indicator on an aircraft

Indicated airspeed (IAS) is the airspeed of an aircraft as measured by its pitot-static system and displayed by the airspeed indicator (ASI). This is the pilots' primary airspeed reference.

<span class="mw-page-title-main">Slip (aerodynamics)</span> Aerobatic maneuver

A slip is an aerodynamic state where an aircraft is moving somewhat sideways as well as forward relative to the oncoming airflow or relative wind. In other words, for a conventional aircraft, the nose will be pointing in the opposite direction to the bank of the wing(s). The aircraft is not in coordinated flight and therefore is flying inefficiently.

In aviation, calibrated airspeed (CAS) is indicated airspeed corrected for instrument and position error.

<span class="mw-page-title-main">Cessna 400</span> Single engine general aviation aircraft

The Cessna 400, marketed as the Cessna TTx, is a single-engine, fixed-gear, low-wing general aviation aircraft built from composite materials by Cessna Aircraft. The Cessna 400 was originally built by Columbia Aircraft as the Columbia 400 until December 2007. From 2013, the aircraft was built as the Cessna TTx Model T240.

<span class="mw-page-title-main">Light-sport aircraft</span> Category of lightweight aircraft that are simple to fly

A light-sport aircraft (LSA), or light sport aircraft, is a category of small, lightweight aircraft that are simple to fly. LSAs tend to be heavier and more sophisticated than ultralight aircraft, but LSA restrictions on weight and performance separates the category from established GA aircraft. There is no standard worldwide description of an LSA.

<span class="mw-page-title-main">Rate of climb</span> Aircraft vertical velocity during flight

In aeronautics, the rate of climb (RoC) is an aircraft's vertical speed, that is the positive or negative rate of altitude change with respect to time. In most ICAO member countries, even in otherwise metric countries, this is usually expressed in feet per minute (ft/min); elsewhere, it is commonly expressed in metres per second (m/s). The RoC in an aircraft is indicated with a vertical speed indicator (VSI) or instantaneous vertical speed indicator (IVSI).

<span class="mw-page-title-main">Vertical stabilizer</span> Aircraft component

A vertical stabilizer or tail fin is the static part of the vertical tail of an aircraft. The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim in yaw. It is part of the aircraft empennage, specifically of its stabilizers.

A banked turn is a turn or change of direction in which the vehicle banks or inclines, usually towards the inside of the turn. For a road or railroad this is usually due to the roadbed having a transverse down-slope towards the inside of the curve. The bank angle is the angle at which the vehicle is inclined about its longitudinal axis with respect to the horizontal.

<span class="mw-page-title-main">Range (aeronautics)</span> Distance an aircraft can fly between takeoff and landing

The maximal total range is the maximum distance an aircraft can fly between takeoff and landing. Powered aircraft range is limited by the aviation fuel energy storage capacity considering both weight and volume limits. Unpowered aircraft range depends on factors such as cross-country speed and environmental conditions. The range can be seen as the cross-country ground speed multiplied by the maximum time in the air. The fuel time limit for powered aircraft is fixed by the available fuel and rate of consumption.

Aircraft upset is an unacceptable condition, in aircraft operations, in which the aircraft flight attitude or airspeed is outside the normally intended limits. This may result in the loss of control (LOC) of the aircraft, and sometimes the total loss of the aircraft itself. Loss of control may be due to excessive altitude for the airplane's weight, turbulent weather, pilot disorientation, or a system failure.

In aeronautics, the load factor is the ratio of the lift of an aircraft to its weight and represents a global measure of the stress ("load") to which the structure of the aircraft is subjected:

<span class="mw-page-title-main">Coffin corner (aerodynamics)</span> Dangerous condition in aviation

Coffin corner is the region of flight where a fast but subsonic fixed-wing aircraft's stall speed is near the critical Mach number, at a given gross weight and G-force loading. In this region of flight, it is very difficult to keep an airplane in stable flight. Because the stall speed is the minimum speed required to maintain level flight, any reduction in speed will cause the airplane to stall and lose altitude. Because the critical Mach number is the maximum speed at which air can travel over the wings without losing lift due to flow separation and shock waves, any increase in speed will cause the airplane to lose lift, or to pitch heavily nose-down, and lose altitude.

<span class="mw-page-title-main">V speeds</span> Standard terms to define airspeeds

In aviation, V-speeds are standard terms used to define airspeeds important or useful to the operation of all aircraft. These speeds are derived from data obtained by aircraft designers and manufacturers during flight testing for aircraft type-certification. Using them is considered a best practice to maximize aviation safety, aircraft performance, or both.

<span class="mw-page-title-main">Flight envelope protection</span>

Flight envelope protection is a human machine interface extension of an aircraft's control system that prevents the pilot of an aircraft from making control commands that would force the aircraft to exceed its structural and aerodynamic operating limits. It is used in some form in all modern commercial fly-by-wire aircraft. The professed advantage of flight envelope protection systems is that they restrict a pilot's excessive control inputs, whether in surprise reaction to emergencies or otherwise, from translating into excessive flight control surface movements. Notionally, this allows pilots to react quickly to an emergency while blunting the effect of an excessive control input resulting from "startle," by electronically limiting excessive control surface movements that could over-stress the airframe and endanger the safety of the aircraft.

The aircraft gross weight is the total aircraft weight at any moment during the flight or ground operation.

References

  1. 1 2 Federal Aviation Administration, Advisory Circular 23-19A, Airframe Guide for Certification of Part 23 Airplanes, Section 48 (p.27) Retrieved 2012-01-06
  2. CNATRA P-821 (Rev. 01-08) "Flight Training Instruction, Advanced Naval Flight Officer (T-45C)". Department of the Navy, 2008.
  3. Federal Aviation Administration, 14CFR §25.1583 Final Rule Retrieved 2012-01-06
  4. 14 CFR §23.335(c)(2) Definition of Maneuvering Speed
  5. Jeppesen Instrument/Commercial Manual. 2000. ISBN   0-88487-274-2.
  6. USA 14 CFR §23.1507 Retrieved 2012-01-06