Mars Space Flight Facility

Last updated

The Mars Space Flight Facility is located at Arizona State University in Tempe, Arizona.

The facility is a research center in Arizona State University's School for Earth and Space Exploration. [1] Scientists, researchers, and students there specialize in using instruments on spacecraft at Mars for remote sensing research primarily concerning the geology and mineralogy of the planet.

The instruments based at the facility include the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter and two Miniature Thermal Emission Spectrometers (Mini-TES) on the Mars Exploration Rovers, Spirit and Opportunity. (A full-size Mars rover model, bedded on reddish-brown sand, dominates the building's lobby.) Before the loss of NASA's Mars Global Surveyor in November 2006, the facility also operated the Thermal Emission Spectrometer (TES) aboard the spacecraft.

On May 25, 2011, NASA announced a New Frontiers Mission, OSIRIS-REx, to a carbonaceous asteroid. The mission will include OTES, an updated and modified version of the Mini-TES Spectrometer from the MER missions. [2]

The facility's director is Dr. Phil Christensen; he is the principal investigator of the THEMIS instrument, a co-investigator on the Mars Exploration Rover project, and the principal investigator of the Mini-TES instrument on board the rovers. He was also the principal investigator for Thermal Emission Spectrometer (TES).

In addition, the facility houses the Mars Education Program, [3] which provides workshops, field trips, and other opportunities for teachers and students to join with scientists in Mars exploration.

Related Research Articles

<i>2001 Mars Odyssey</i> NASA orbiter for geology and hydrology

2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment. It is hoped that the data Odyssey obtains would help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Curiosity rover, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of his and Stanley Kubrick's 1968 film 2001: A Space Odyssey.

<span class="mw-page-title-main">Mars Exploration Rover</span> NASA mission to explore Mars via two rovers

NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, Spirit and Opportunity, exploring the planet Mars. It began in 2003 with the launch of the two rovers to explore the Martian surface and geology; both landed on Mars at separate locations in January 2004. Both rovers far outlived their planned missions of 90 Martian solar days: MER-A Spirit was active until March 22, 2010, while MER-B Opportunity was active until June 10, 2018.

<span class="mw-page-title-main">Gusev (Martian crater)</span> Crater on Mars

Gusev is a crater on the planet Mars and is located at 14.5°S 175.4°E and is in the Aeolis quadrangle. The crater is about 166 kilometers in diameter and formed approximately three to four billion years ago. It was named after Russian astronomer Matvey Gusev (1826–1866) in 1976.

<span class="mw-page-title-main">Alpha particle X-ray spectrometer</span>

An alpha particle X-ray spectrometer (APXS) is a spectrometer that analyses the chemical element composition of a sample from scattered alpha particles and fluorescent X-rays after a sample is irradiated with alpha particles and X-rays from radioactive sources. This method of analysing the elemental composition of a sample is most often used on space missions, which require low weight, small size, and minimal power consumption. Other methods are faster, and do not require the use of radioactive materials, but require larger equipment with greater power requirements. A variation is the alpha proton X-ray spectrometer, such as on the Pathfinder mission, which also detects protons.

Thermal infrared spectroscopy is the subset of infrared spectroscopy that deals with radiation emitted in the infrared part of the electromagnetic spectrum. The emitted infrared radiation, though similar to blackbody radiation, is different in that the radiation is banded at characteristic vibrations in the material. The method measures the thermal infrared radiation emitted from a volume or surface. This method is commonly used to identify the composition of surface by analyzing its spectrum and comparing it to previously measured materials. It is particularly suited to airborne and spaceborne applications.

Maestro (software) was a free program released by NASA to allow users to view photos and daily progress of the Spirit and Opportunity rovers. It served as an activity planner for Mars that utilized a combination of 2D and 3D visuals to track the movement and missions of the Spirit and Opportunity rovers in 2004.

<span class="mw-page-title-main">Phil Christensen</span> American planetary scientist

Philip Russel Christensen is a geologist whose research interests focus on the composition, physical properties, processes, and morphology of planetary surfaces, with an emphasis on Mars and the Earth. He is currently a Regents' Professor and the Ed and Helen Korrick Professor of Geological Sciences at Arizona State University (ASU).

<span class="mw-page-title-main">Mini-TES</span> Infrared spectrometer used for detecting the composition of a material

The Miniature Thermal Emission Spectrometer (Mini-TES) is an infrared spectrometer used for detecting the composition of a material from a distance. By making its measurements in the thermal infrared part of the electromagnetic spectrum, it has the ability to penetrate through the dust coatings common to the Martian surface which is usually problematic for remote sensing observations. There is one on each of the two Mars Exploration Rovers.

<span class="mw-page-title-main">Scientific information from the Mars Exploration Rover mission</span>

NASA's 2003 Mars Exploration Rover Mission has amassed an enormous amount of scientific information related to the Martian geology and atmosphere, as well as providing some astronomical observations from Mars. This article covers information gathered by the Opportunity rover during the initial phase of its mission. Information on science gathered by Spirit can be found mostly in the Spirit rover article.

<span class="mw-page-title-main">Lunar and Planetary Laboratory</span> Lab at University of Arizona

The Lunar and Planetary Laboratory (LPL) is a research center for planetary science located in Tucson, Arizona. It is also a graduate school, constituting the Department of Planetary Sciences at the University of Arizona. LPL is one of the world's largest programs dedicated exclusively to planetary science in a university setting. The Lunar and Planetary Lab collection is held at the University of Arizona Special Collections Library.

<span class="mw-page-title-main">Beagle (crater)</span> Crater on Mars

Beagle is a crater lying within the Margaritifer Sinus quadrangle (MC-19) portion of the planet Mars, the crater is one of multiple topographical depressions within the Meridiani Planum extraterrestrial plain, which was explored by the Opportunity rover. It was located by the rover in images taken on sol 855, 310 metres (1,107 ft) away. It is on the edge of the much larger ejecta blanket surrounding the crater Victoria, named the Victoria Annulus. This impact crater was named in honor of HMA Beagle of the Royal Navy, ordered in February 1817, which carried Charles Darwin on his voyage round the world.

<span class="mw-page-title-main">Mawrth Vallis</span> Valley on Mars

Mawrth Vallis is a valley on Mars, located in the Oxia Palus quadrangle at 22.3°N, 343.5°E with an elevation approximately two kilometers below datum. Situated between the southern highlands and northern lowlands, the valley is a channel formed by massive flooding which occurred in Mars’ ancient past. It is an ancient water outflow channel with light-colored clay-rich rocks.

<span class="mw-page-title-main">OSIRIS-REx</span> NASA sample return mission, launched in 2016

OSIRIS-REx was a NASA asteroid-study and sample-return mission that visited and collected samples from 101955 Bennu, a carbonaceous near-Earth asteroid. The material, returned in September 2023, is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth. Following the completion of the primary OSIRIS-REx mission, the spacecraft is planned to conduct a flyby of asteroid 99942 Apophis, now as OSIRIS-APEX.

<span class="mw-page-title-main">Composition of Mars</span> Branch of the geology of Mars

The composition of Mars covers the branch of the geology of Mars that describes the make-up of the planet Mars.

<span class="mw-page-title-main">Phobos And Deimos & Mars Environment</span> NASA Mars orbiter mission concept

Phobos And Deimos & Mars Environment (PADME) is a low-cost NASA Mars orbiter mission concept that would address longstanding unknowns about Mars' two moons Phobos and Deimos and their environment.

<span class="mw-page-title-main">Lunar Polar Hydrogen Mapper</span> US Moon-orbiting ice-finding satellite

Lunar Polar Hydrogen Mapper, or LunaH-Map, was one of the 10 CubeSats launched with Artemis 1 on 16 November 2022. Along with Lunar IceCube and LunIR, LunaH-Map will help investigate the possible presence of water-ice on the Moon. Arizona State University began development of LunaH-Map after being awarded a contract by NASA in early 2015. The development team consists of about 20 professionals and students led by Craig Hardgrove, the principal investigator. The mission is a part of NASA's SIMPLEx program.

<span class="mw-page-title-main">Ogygis Undae</span> Martian dune field

Ogygis Undae is the only named southern hemisphere dune field on Mars. It is named after one of the classical albedo features on Mars, Ogygis Regio. Its name, which refers to Ogyges, a primeval mythological ruler in ancient Greece, was officially approved by the International Astronomical Union (IAU) on September 17, 2015. It is situated just outside Argyre Planitia, a plain located in the southern highlands of Mars. The dunes of Ogygis Undae extend from latitude −49.94°N to −49.37°N and from longitude 292.64°E to 294.93°E. They are centered at latitude −49.66°N, longitude 293.79°E (66.21°W), and extend approximately 87 km to the east and west from there. Ogygis Undae has an area of 1904 km2, and due to its large size is a primary subject for research on Martian dune morphology and sand composition.

COmet Rendezvous, Sample Acquisition, Investigation, and Return (CORSAIR) is a concept mission to return comet nucleus samples to Earth for detailed analysis. The mission concept was submitted in May 2017 by a team from NASA's Goddard Space Flight Center in response to the New Frontiers program call for mission 4, but did not pass the initial down selection. As a comet sample return mission was not ultimately selected for mission 4, the CORSAIR team may re-submit the concept to a future New Frontiers program call.

The Europa Thermal Emission Imaging System (E-THEMIS) instrument is designed to scan the surface of Europa and identify areas of geologically recent resurfacing through the detection of subtle thermal anomalies. This 'heat detector' will provide high spatial resolution, multi-spectral thermal imaging of Europa to help detect active sites such as outflows and plumes. E-THEMIS will be launched on board the planned Europa Clipper astrobiology mission to Jupiter's moon Europa in 2024.

References

  1. "School of Earth and Space Exploration".
  2. Administrator, NASA (June 6, 2013). "NASA Selects OSIRIS-REx as Next New Frontiers Mission". NASA.
  3. "Mars Education". marsed.asu.edu.

33°25′05″N111°56′10″W / 33.4179902°N 111.9360869°W / 33.4179902; -111.9360869