Martensitic stainless steel

Last updated
Tweezers made of 410 martensitic stainless steel Tweezers made of martensitic stainless steel JIS SUS410.jpg
Tweezers made of 410 martensitic stainless steel

Martensitic stainless steel is a type of stainless steel alloy that has a martensite crystal structure. It can be hardened and tempered through aging and heat treatment. [1] [2] [3] [4] The other main types of stainless steel are austenitic , ferritic , duplex , and precipitation hardened . [5]

Contents

History

In 1912, Harry Brearley of the Brown-Firth research laboratory in Sheffield, England, while seeking a corrosion-resistant alloy for gun barrels, discovered and subsequently industrialized a martensitic stainless steel alloy. The discovery was announced two years later in a January 1915 newspaper article in The New York Times . [6] Brearly applied for a U.S. patent during 1915. This was later marketed under the "Staybrite" brand by Firth Vickers in England and was used for the new entrance canopy for the Savoy Hotel in 1929 in London. [7]

The characteristic body-centered tetragonal martensite microstructure was first observed by German microscopist Adolf Martens around 1890. In 1912, Elwood Haynes applied for a U.S. patent on a martensitic stainless steel alloy. This patent was not granted until 1919. [8]

Overview

Martensitic stainless steels can be high- or low-carbon steels built around the composition of iron, 12% up to 17% chromium, carbon from 0.10% (Type 410) up to 1.2% (Type 440C): [9]

They may contain some Ni (Type 431) which allows a higher Cr and/or Mo content, thereby improving corrosion resistance and as the carbon content is also lower, the toughness is improved. Grade EN 1.4313 (CA6NM) with a low C, 13%Cr and 4%Ni offers good mechanical properties, good castability, and good weldability. It is used for nearly all the hydroelectric turbines in the world, including those of the huge "Three Gorges" dam in China.

Additions of B, Co, Nb, Ti improve the high temperature properties, particularly creep resistance. This is used for heat exchangers in steam turbines.

A specific grade is Type 630 (also called 17-4 PH) which is martensitic and hardens by precipitation at 475 °C (887 °F).

Chemical compositions

Chemical composition of a few common martensitic stainless steel grades from EN 10088-1 (2005) standard
Chemical composition (main alloying elements) in wt%
EN

Steel designation

EN

Number

AISI

Number

Number C Cr Mo OthersRemarks
X12Cr131.40064100.1212.5Base grade, used as stainless engineering steel
X20Cr131.40214200.2013.0Base grade, used as stainless engineering steel
X50CrMoV151.4116-0.5014.50.65 V: 0.15Used chiefly for professional knives
X14CrMoS171.4104430F0.1416.50.40 S: 0.25Sulphur improves machinability
X39CrMo17-11.4122-0.4016.51.10Used chiefly for professional knives
X105CrMo171.4125440C1.1017.00.60Tool steel grade (440C), high wear resistance
X17CrNi16-21.40574310.1716.0 Ni: 2.00Ni replaces some C for higher ductility & toughness
X4CrNiMo16-5-11.4418-≤ 0.0616.01.10Ni: 2.00Highest corrosion resistance of martensitics
X5CrNiCuNb16-41.4542 630 (17-4PH) ≤ 0.0716.0-Ni: 4.00

Cu: 4.00

Nb: 5xC to 0.45

Precipitation hardening grade

High strength. Used in aerospace

There are many proprietary grades not listed in the standards, particularly for cutlery.

Mechanical Properties

They are hardenable by heat treatment (specifically by quenching and stress relieving, or by quenching and tempering (referred to as QT). [10] [11] The alloy composition, and the high cooling rate of quenching enable the formation of martensite. Untempered martensite is low in toughness and therefore brittle.Tempered martensite gives steel good hardness and high toughness as can be seen below; used largely for medical tools (scalpels, razors and internal clamps). [12]

Mechanical properties of a few common martensitic stainless steel grades according to EN 10088-3 Standard
ENMininmum Yield stressTensile strengthMinimum Elongation, %Heat treatment
1.4006450 MPa (65 ksi)650–850 MPa (94–123 ksi)15QT650
1.4021600 MPa (87 ksi)650–850 MPa (94–123 ksi)12QT800
1.4122550 MPa (80 ksi)750–950 MPa (109–138 ksi)12QT750
1.4057700 MPa (100 ksi)900–1,050 MPa (131–152 ksi)12QT900
1.4418700 MPa (100 ksi)840–1,100 MPa (122–160 ksi)16QT900
1.4542790 MPa (115 ksi)960–1,160 MPa (139–168 ksi)12P960

In the heat treatment column, QT refers to Quenched and Tempered, P refers to Precipitation hardened

Physical properties

Physical properties of a few common martensitic stainless steels from EN 10088-1 (2005) standard
EN DesignationENAISIYoung's Modulus at 20 °C (68 °F),

Gpa

Mean coefficient of thermal expansion between 20 and 100 °C (68 and 212 °F)

10−6K−1.

Thermal Conductivity at 20 °C

W * m−1K−1

Specific Thermal capacity at 20 °C

J * Kg−1 * K−1

Electrical resitivity

10−6Ω * m

X12Cr131.4006410215 GPa (31.2×10^6 psi)10.5304600.60
X20Cr131.4021420215 GPa (31.2×10^6 psi)10.5304600.65
X50CrMoV151.4116420MoV215 GPa (31.2×10^6 psi)10.5304600.65
X39CrMo17-11.4122215 GPa (31.2×10^6 psi)10.4154300.80
X105CrMo171.4125440C215 GPa (31.2×10^6 psi)10.4154300.80
X17CrNi16-21.4057431215 GPa (31.2×10^6 psi)10.0254600.70
X3CrNiMo13-41.4313200 GPa (29×10^6 psi)10.5254300.60
X4CrNiMo16-5-11.4418195 GPa (28.3×10^6 psi)10.3304300.80
X5CrNiCuNb16-41.4542630200 GPa (29×10^6 psi)10.9305000.71

Processing

When formability, softness, etc. are required in fabrication, steel having 0.12% maximum carbon is often used in soft condition. With increasing carbon, it is possible by hardening and tempering to obtain tensile strength in the range of 600 to 900 MPa (87 to 131 ksi), combined with reasonable toughness and ductility. In this condition, these steels find many useful general applications where mild corrosion resistance is required. Also, with the higher carbon range in the hardened and lightly tempered condition, tensile strength of about 1,600 MPa (230 ksi) may be developed with lowered ductility.

A common example of a Martensitic stainless steel is X46Cr13.

Martensitic stainless steel can be nondestructively tested using the magnetic particle inspection method, unlike austenitic stainless steel.

Applications

Martensitic stainless steels, depending upon their carbon content are often used for their corrosion resistance and high strength in pumps, valves, and boat shafts. [4]

They are also used for their wear resistance in, cutlery, medical tools (scalpels, razors and internal clamps), [12] ball bearings, razor blades, injection molds for polymers, and brake disks for bicycles and motorbikes.

Related Research Articles

<span class="mw-page-title-main">Steel</span> Metal alloy of iron with other elements

Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels, which are resistant to corrosion and oxidation, typically need an additional 11% chromium. Because of its high tensile strength and low cost, steel is used in buildings, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons.

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES), or Rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains at least 10.5% chromium and usually nickel, and may also contain other elements, such as carbon, to obtain the desired properties. Stainless steel's resistance to corrosion results from the chromium, which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Austenite</span> Metallic, non-magnetic allotrope of iron or a solid solution of iron, with an alloying element

Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902); it exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.

<span class="mw-page-title-main">Carbon steel</span> Steel in which the main interstitial alloying constituent is carbon

Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:

<span class="mw-page-title-main">Tool steel</span> Any of various steels that are particularly well-suited to be made into tools and tooling

Tool steel is any of various carbon steels and alloy steels that are particularly well-suited to be made into tools and tooling, including cutting tools, dies, hand tools, knives, and others. Their suitability comes from their distinctive hardness, resistance to abrasion and deformation, and their ability to hold a cutting edge at elevated temperatures. As a result, tool steels are suited for use in the shaping of other materials, as for example in cutting, machining, stamping, or forging.

<span class="mw-page-title-main">Maraging steel</span> Steel known for strength and toughness

Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.

<span class="mw-page-title-main">Tempering (metallurgy)</span> Process of heat treating used to increase the toughness of iron-based alloys

Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.

Cryogenic hardening is a cryogenic treatment process where the material is cooled to approximately −185 °C (−301 °F), usually using liquid nitrogen. It can have a profound effect on the mechanical properties of certain steels, provided their composition and prior heat treatment are such that they retain some austenite at room temperature. It is designed to increase the amount of martensite in the steel's crystal structure, increasing its strength and hardness, sometimes at the cost of toughness. Presently this treatment is being used on tool steels, high-carbon, high-chromium steels and in some cases to cemented carbide to obtain excellent wear resistance. Recent research shows that there is precipitation of fine carbides in the matrix during this treatment which imparts very high wear resistance to the steels.

The weldability, also known as joinability, of a material refers to its ability to be welded. Many metals and thermoplastics can be welded, but some are easier to weld than others. A material's weldability is used to determine the welding process and to compare the final weld quality to other materials.

Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

<span class="mw-page-title-main">Austenitic stainless steel</span> One of the 5 crystalline structures of stainless steel

Austenitic stainless steel is one of the five classes of stainless steel by crystalline structure. Its primary crystalline structure is austenite and it prevents steels from being hardenable by heat treatment and makes them essentially non-magnetic. This structure is achieved by adding enough austenite-stabilizing elements such as nickel, manganese and nitrogen. The Incoloy family of alloys belong to the category of super austenitic stainless steels.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

AerMet alloy is an ultra-high strength type of martensitic alloy steel. The main alloying elements are cobalt and nickel, but chromium, molybdenum and carbon are also added. Its exceptional properties are hardness, tensile strength, fracture toughness and ductility. Aermet is weldable with no preheating needed. AerMet alloy is not corrosion resistant, so it must be sealed if used in a moist environment. AerMet is a registered trademark of Carpenter Technology Corporation.

<span class="mw-page-title-main">Austempering</span>

Austempering is heat treatment that is applied to ferrous metals, most notably steel and ductile iron. In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce / eliminate distortion. Austempering is defined by both the process and the resultant microstructure. Typical austempering process parameters applied to an unsuitable material will not result in the formation of bainite or ausferrite and thus the final product will not be called austempered. Both microstructures may also be produced via other methods. For example, they may be produced as-cast or air cooled with the proper alloy content. These materials are also not referred to as austempered.

Microalloyed steel is a type of alloy steel that contains small amounts of alloying elements, including niobium, vanadium, titanium, molybdenum, zirconium, boron, and rare-earth metals. They are used to refine the grain microstructure or facilitate precipitation hardening.

<span class="mw-page-title-main">Mangalloy</span> Alloy steel containing around 13% manganese

Mangalloy, also called manganese steel or Hadfield steel, is an alloy steel containing an average of around 13% manganese. Mangalloy is known for its high impact strength and resistance to abrasion once in its work-hardened state.

Thermomechanical processing is a metallurgical process that combines mechanical or plastic deformation process like compression or forging, rolling, etc. with thermal processes like heat-treatment, water quenching, heating and cooling at various rates into a single process.

<span class="mw-page-title-main">Ferritic stainless steel</span> High chromium, low carbon stainless steel type

Ferritic stainless steel forms one of the five stainless steel families, the other four being austenitic, martensitic, duplex stainless steels, and precipitation hardened. For example, many of AISI 400-series of stainless steels are ferritic steels. By comparison with austenitic types, these are less hardenable by cold working, less weldable, and should not be used at cryogenic temperatures. Some types, like the 430, have excellent corrosion resistance and are very heat tolerant.

References

  1. "Premium Alloys 17-4 Stainless Steel" . Retrieved 2019-11-26.
  2. "Classifications of Stainless Steel". aws.org. American Welding Society. Retrieved 2019-04-02.
  3. D. Peckner and I.M. Berstein (1977). Handbook of stainless steels. Mc Graw Hill. pp. Chapter 6. ISBN   978-0070491472.
  4. 1 2 "Martensitic Stainless Steels". International Stainless Steel Forum. 2018.
  5. The International Nickel Company (1974). "Standard Wrought Austenitic Stainless Steels". Nickel Institute. Archived from the original on 2018-01-09. Retrieved 2018-01-09.
  6. "A non-rusting steel". New York Times. 31 January 1915.
  7. Sheffield Steel, ISBN   0-7509-2856-5.
  8. Rodney Carlisle; Scientific American (2005-01-28). Scientific American Inventions and Discoveries: All the Milestones in Ingenuity – From the Discovery of Fire to the Invention of the Microwave Oven. John Wiley & Sons. p. 380. ISBN   978-0-471-66024-8.
  9. http://metals.about.com/od/properties/a/Steel-Types-And-Properties.htm, http://www.totalmateria.com/page.aspx?ID=CheckArticle&site=kts&NM=199.
  10. Dossett, Jon L; Totten, George E., eds. (2014). Heat treating of irons and steels. ASM International. pp. 382–396. ISBN   978-1-62708-168-9.
  11. Budynas, Richard G. and Nisbett, J. Keith (2008). Shigley's Mechanical Engineering Design, Eight Edition. New York, NY: McGraw-Hill Higher Education. ISBN   978-0-07-312193-2.
  12. 1 2 Akhavan Tabatabae, Behnam; et al. (2009). "Influence of Retained Austenite on the Mechanical Properties of Low Carbon Martensitic Stainless Steel Castings". ISIJ International. 51 (3): 471–475. doi: 10.2355/isijinternational.51.471 .