Martyn Fogg

Last updated

Martyn Fogg
BornMartyn John Fogg
(1960-07-03) 3 July 1960 (age 64)
London, England, UK
OccupationPhysicist, geologist
NationalityBritish
Alma mater Queen Mary University of London

Martyn John Fogg (born 3 July 1960) is a British physicist and geologist, an expert on terraforming.

Contents

Biography

After becoming a dental surgeon, Fogg graduated in physics and geology and a master in astrophysics. He obtained his M.S. in astrophysics at Queen Mary College of the University of London with a thesis on origin and distribution of free-floating planets in 2002, and a Ph.D in planetary science with work on the dynamics of planetary formation involving the modelling of the formation of terrestrial planets in the presence of giant planet migration in 2008. Fogg lives in London.

Research

Contributions to global engineering

Fogg's scientific work started in 1985, with work on simulating extrasolar planetary systems. [1] Starting in 1987, Fogg began research on terraforming, [2] [3] and published a series of articles on the subject, primarily in the Journal of the British Interplanetary Society. He served as guest editor for a special issue on the subject in 1991. In 1995 this work culminated in the book Terraforming: Engineering Planetary Environments, [4] the first textbook on the subject of terraforming.

In addition to Journal of the British Interplanetary Society, he has published in various journals including: Icarus , Astronomy and Astrophysics , Comments on Astrophysics, Advances in Space Research . and Earth, Moon, and Planets , as well as presenting papers at various scientific and technical conferences.[ citation needed ]

Planetary migration

Since the 2000s, his research has focused on dynamics of planet formation, and the effects of the migration of planets such as hot Jupiters on early solar system formation. [5] [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Planet</span> Large, round non-stellar astronomical object

A planet is a large, rounded astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets by the most restrictive definition of the term: the terrestrial planets Mercury, Venus, Earth, and Mars, and the giant planets Jupiter, Saturn, Uranus, and Neptune. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young protostar orbited by a protoplanetary disk. Planets grow in this disk by the gradual accumulation of material driven by gravity, a process called accretion.

<span class="mw-page-title-main">Terraforming</span> Hypothetical planetary engineering process

Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make it habitable for humans to live on.

<span class="mw-page-title-main">Nebular hypothesis</span> Astronomical theory about the Solar System

The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

<span class="mw-page-title-main">Hot Jupiter</span> Class of high-mass planets orbiting close to a star

Hot Jupiters are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter but that have very short orbital periods. The close proximity to their stars and high surface-atmosphere temperatures resulted in their informal name "hot Jupiters".

Planetary engineering is the development and application of technology for the purpose of influencing the environment of a planet. Planetary engineering encompasses a variety of methods such as terraforming, seeding, and geoengineering.

<span class="mw-page-title-main">Planetary migration</span> Astronomical phenomenon

Planetary migration occurs when a planet or other body in orbit around a star interacts with a disk of gas or planetesimals, resulting in the alteration of its orbital parameters, especially its semi-major axis. Planetary migration is the most likely explanation for hot Jupiters. The generally accepted theory of planet formation from a protoplanetary disk predicts that such planets cannot form so close to their stars, as there is insufficient mass at such small radii and the temperature is too high to allow the formation of rocky or icy planetesimals.

<span class="mw-page-title-main">Planetary habitability</span> Known extent to which a planet is suitable for life

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain an environment hospitable to life. Life may be generated directly on a planet or satellite endogenously. Research suggests that life may also be transferred from one body to another, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

<span class="mw-page-title-main">Colonization of Venus</span> Proposed colonization of the planet Venus

The colonization of Venus has been a subject of many works of science fiction since before the dawn of spaceflight, and is still discussed from both a fictional and a scientific standpoint. However, with the discovery of Venus's extremely hostile surface environment, attention has largely shifted towards the colonization of the Moon and Mars instead, with proposals for Venus focused on habitats floating in the upper-middle atmosphere and on terraforming.

Terraforming is well represented in contemporary literature, usually in the form of science fiction, as well as in popular culture. While many stories involving interstellar travel feature planets already suited to habitation by humans and supporting their own indigenous life, some authors prefer to address the unlikeliness of such a concept by instead detailing the means by which humans have converted inhospitable worlds to ones capable of supporting life through artificial means.

<span class="mw-page-title-main">Terraforming of Venus</span> Engineering the global environment of Venus to make it suitable for humans

The terraforming of Venus or the terraformation of Venus is the hypothetical process of engineering the global environment of the planet Venus in order to make it suitable for human habitation. Adjustments to the existing environment of Venus to support human life would require at least three major changes to the planet's atmosphere:

  1. Reducing Venus's surface temperature of 737 K
  2. Eliminating most of the planet's dense 9.2 MPa (91 atm) carbon dioxide and sulfur dioxide atmosphere via removal or conversion to some other form
  3. The addition of breathable oxygen to the atmosphere.

The ethics of terraforming has constituted a philosophical debate within biology, ecology, and environmental ethics as to whether terraforming other worlds is an ethical endeavor.

<span class="mw-page-title-main">Gliese 876 d</span> Super-Earth orbiting Gliese 876

Gliese 876 d is an exoplanet 15.2 light-years away in the constellation of Aquarius. The planet was the third planet discovered orbiting the red dwarf Gliese 876, and is the innermost planet in the system. It was the lowest-mass known exoplanet apart from the pulsar planets orbiting PSR B1257+12 at the time of its discovery. Due to its low mass, it can be categorized as a super-Earth.

<span class="mw-page-title-main">Formation and evolution of the Solar System</span>

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

<span class="mw-page-title-main">Earth analog</span> Planet with environment similar to Earths

An Earth analog, also called an Earth twin or second Earth, is a planet or moon with environmental conditions similar to those found on Earth. The term Earth-like planet is also used, but this term may refer to any terrestrial planet.

The five-planet Nice model is a numerical model of the early Solar System that is a revised variation of the Nice model. It begins with five giant planets, the four that exist today plus an additional ice giant between Saturn and Uranus in a chain of mean-motion resonances.

<span class="mw-page-title-main">Planetary science</span> Science of planets and planetary systems

Planetary science is the scientific study of planets, celestial bodies and planetary systems and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, with the aim of determining their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

The jumping-Jupiter scenario specifies an evolution of giant-planet migration described by the Nice model, in which an ice giant is scattered inward by Saturn and then ejected by Jupiter, causing their semi-major axes to jump, and thereby quickly separating their orbits. The jumping-Jupiter scenario was proposed by Ramon Brasser, Alessandro Morbidelli, Rodney Gomes, Kleomenis Tsiganis, and Harold Levison after their studies revealed that the smooth divergent migration of Jupiter and Saturn resulted in an inner Solar System significantly different from the current Solar System. During this migration secular resonances swept through the inner Solar System exciting the orbits of the terrestrial planets and the asteroids, leaving the planets' orbits too eccentric, and the asteroid belt with too many high-inclination objects. The jumps in the semi-major axes of Jupiter and Saturn described in the jumping-Jupiter scenario can allow these resonances to quickly cross the inner Solar System without altering orbits excessively, although the terrestrial planets remain sensitive to its passage.

<span class="mw-page-title-main">Grand tack hypothesis</span> Theory of early changes in Jupiters orbit

In planetary astronomy, the grand tack hypothesis proposes that Jupiter formed at a distance of 3.5 AU from the Sun, then migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's planetary migration is likened to the path of a sailboat changing directions (tacking) as it travels against the wind.

<span class="mw-page-title-main">Pebble accretion</span>

Pebble accretion is the accumulation of particles, ranging from centimeters up to meters in diameter, into planetesimals in a protoplanetary disk that is enhanced by aerodynamic drag from the gas present in the disk. This drag reduces the relative velocity of pebbles as they pass by larger bodies, preventing some from escaping the body's gravity. These pebbles are then accreted by the body after spiraling or settling toward its surface. This process increases the cross section over which the large bodies can accrete material, accelerating their growth. The rapid growth of the planetesimals via pebble accretion allows for the formation of giant planet cores in the outer Solar System before the dispersal of the gas disk. A reduction in the size of pebbles as they lose water ice after crossing the ice line and a declining density of gas with distance from the sun slow the rates of pebble accretion in the inner Solar System resulting in smaller terrestrial planets, a small mass of Mars and a low mass asteroid belt.

References

  1. Fogg, Martyn J. (1985). Extra-Solar Planetary Systems: A Microcomputer Simulation ,[ dead link ]Journal of the British Interplanetary Society, 38, pp. 501-514 (accessed 26 Dec. 2016)
  2. Fogg, Martyn J. (1987). "The Terraforming of Venus," Journal of the British Interplanetary Society, 40, pp. 551-564.
  3. Fogg, Martyn J. (1989). "The Creation of an Artificial Dense Martian Atmosphere: A Major Obstacle to the Terraforming of Mars", Journal of the British Interplanetary Society, 42, p. 577.
  4. Fogg, Martyn J. (1995). Terraforming: Engineering Planetary Environments. SAE International, Warrendale, PA. ISBN   978-1-56091-609-3.
  5. Fogg, Martyn J., and Nelson, Richard P. (2005). "Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration." Astronomy & Astrophysics 441.2, pp. 791-806.
  6. Fogg, Martyn J., and Nelson, Richard P. (2007). "The effect of type I migration on the formation of terrestrial planets in hot-Jupiter systems." Astronomy & Astrophysics 472.3, pp. 1003-1015.
  7. Fogg, Martyn J., and Nelson, Richard P. (2009). "Terrestrial planet formation in low-eccentricity warm-Jupiter systems." Astronomy & Astrophysics 498.2, pp. 575-589.

Bibliography

Book

Reviews

Articles available online