Mason's gain formula

Last updated

Mason's gain formula (MGF) is a method for finding the transfer function of a linear signal-flow graph (SFG). The formula was derived by Samuel Jefferson Mason, [1] for whom it is named. MGF is an alternate method to finding the transfer function algebraically by labeling each signal, writing down the equation for how that signal depends on other signals, and then solving the multiple equations for the output signal in terms of the input signal. MGF provides a step by step method to obtain the transfer function from a SFG. Often, MGF can be determined by inspection of the SFG. The method can easily handle SFGs with many variables and loops including loops with inner loops. MGF comes up often in the context of control systems, microwave circuits and digital filters because these are often represented by SFGs.

Contents

Formula

The gain formula is as follows:


where:

Definitions [2]

Procedure to find the solution

  1. Make a list of all forward paths, and their gains, and label these Gk.
  2. Make a list of all the loops and their gains, and label these Li (for i loops). Make a list of all pairs of non-touching loops, and the products of their gains (LiLj). Make a list of all pairwise non-touching loops taken three at a time (LiLjLk), then four at a time, and so forth, until there are no more.
  3. Compute the determinant Δ and cofactors Δk.
  4. Apply the formula.

Examples

Circuit containing two-port

Signal flow graph of a circuit containing a two port. The forward path from input to output is shown in a different color. Circuit with two port and equivalent signal flow graph.png
Signal flow graph of a circuit containing a two port. The forward path from input to output is shown in a different color.

The transfer function from Vin to V2 is desired.

There is only one forward path:

  • Vin to V1 to I2 to V2 with gain

There are three loops:

  • V1 to I1 to V1 with gain
  • V2 to I2 to V2 with gain
  • V1 to I2 to V2 to I1 to V1 with gain
note: L1 and L2 do not touch each other whereas L3 touches both of the other loops.
note: the forward path touches all the loops so all that is left is 1.

Digital IIR biquad filter

The signal flow graph (SFG) for a digital infinite impulse response bi-quad filter. This SFG has three forward paths and two loops. Signal flow graph for a digital IIR Biquad.png
The signal flow graph (SFG) for a digital infinite impulse response bi-quad filter. This SFG has three forward paths and two loops.

Digital filters are often diagramed as signal flow graphs.

There are two loops
Note, the two loops touch so there is no term for their product.
There are three forward paths
All the forward paths touch all the loops so

Servo

Angular position servo and signal flow graph. thC = desired angle command, thL = actual load angle, KP = position loop gain, VoC = velocity command, VoM = motor velocity sense voltage, KV = velocity loop gain, VIC = current command, VIM = current sense voltage, KC = current loop gain, VA = power amplifier output voltage, VM = effective voltage across the inductance, LM = motor inductance, IM = motor current, RM = motor resistance, RS = current sense resistance, KM = motor torque constant (Nm/amp), T = torque, M = moment of inertia of all rotating components a = angular acceleration, o = angular velocity, b = mechanical damping, GM = motor back EMF constant, GT = tachometer conversion gain constant. There is one forward path (shown in a different color) and six feedback loops. The drive shaft assumed to be stiff enough to not treat as a spring. Constants are shown in black and variables in purple. Position servo and signal flow graph.png
Angular position servo and signal flow graph. θC = desired angle command, θL = actual load angle, KP = position loop gain, VωC = velocity command, VωM = motor velocity sense voltage, KV = velocity loop gain, VIC = current command, VIM = current sense voltage, KC = current loop gain, VA = power amplifier output voltage, VM = effective voltage across the inductance, LM = motor inductance, IM = motor current, RM = motor resistance, RS = current sense resistance, KM = motor torque constant (Nm/amp), T = torque, M = moment of inertia of all rotating components α = angular acceleration, ω = angular velocity, β = mechanical damping, GM = motor back EMF constant, GT = tachometer conversion gain constant. There is one forward path (shown in a different color) and six feedback loops. The drive shaft assumed to be stiff enough to not treat as a spring. Constants are shown in black and variables in purple.

The signal flow graph has six loops. They are:

There is one forward path:

The forward path touches all the loops therefore the co-factor

And the gain from input to output is

Equivalent matrix form

Mason's rule can be stated in a simple matrix form. Assume is the transient matrix of the graph where is the sum transmittance of branches from node m toward node n. Then, the gain from node m to node n of the graph is equal to , where

,

and is the identity matrix.

Mason's Rule is also particularly useful for deriving the z-domain transfer function of discrete networks that have inner feedback loops embedded within outer feedback loops (nested loops). If the discrete network can be drawn as a signal flow graph, then the application of Mason's Rule will give that network's z-domain H(z) transfer function.

Complexity and computational applications

Mason's Rule can grow factorially, because the enumeration of paths in a directed graph grows dramatically. To see this consider the complete directed graph on vertices, having an edge between every pair of vertices. There is a path form to for each of the permutations of the intermediate vertices. Thus Gaussian elimination is more efficient in the general case.

Yet Mason's rule characterizes the transfer functions of interconnected systems in a way which is simultaneously algebraic and combinatorial, allowing for general statements and other computations in algebraic systems theory. While numerous inverses occur during Gaussian elimination, Mason's rule naturally collects these into a single quasi-inverse. General form is

Where as described above, is a sum of cycle products, each of which typically falls into an ideal (for example, the strictly causal operators). Fractions of this form make a subring of the rational function field. This observation carries over to the noncommutative case, [3] even though Mason's rule itself must then be replaced by Riegle's rule.

See also

Notes

  1. Mason, Samuel J. (July 1956). "Feedback Theory - Further Properties of Signal Flow Graphs" (PDF). Proceedings of the IRE. 44 (7): 920–926. doi:10.1109/jrproc.1956.275147. hdl: 1721.1/4778 . S2CID   18184015.
  2. Kuo, Benjamin C. (1967). Automatic Control Systems (2nd ed.). Prentice-Hall. pp. 59–60.
  3. Pliam, J.O.; Lee, E.B. (1995). "On the global properties of interconnected systems". IEEE Trans. Circuits and Syst. I. 42 (12): 1013–1017. doi:10.1109/81.481196.

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

<span class="mw-page-title-main">Inductance</span> Property of electrical conductors

Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The electric current produces a magnetic field around the conductor. The magnetic field strength depends on the magnitude of the electric current, and follows any changes in the magnitude of the current. From Faraday's law of induction, any change in magnetic field through a circuit induces an electromotive force (EMF) (voltage) in the conductors, a process known as electromagnetic induction. This induced voltage created by the changing current has the effect of opposing the change in current. This is stated by Lenz's law, and the voltage is called back EMF.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. A list of the spherical harmonics is available in Table of spherical harmonics.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.

In analytical mechanics, generalized coordinates are a set of parameters used to represent the state of a system in a configuration space. These parameters must uniquely define the configuration of the system relative to a reference state. The generalized velocities are the time derivatives of the generalized coordinates of the system. The adjective "generalized" distinguishes these parameters from the traditional use of the term "coordinate" to refer to Cartesian coordinates.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Laplacian matrix can be viewed as a matrix form of the negative discrete Laplace operator on a graph approximating the negative continuous Laplacian obtained by the finite difference method.

In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function.

In quantum field theory and statistical mechanics, loop integrals are the integrals which appear when evaluating the Feynman diagrams with one or more loops by integrating over the internal momenta. These integrals are used to determine counterterms, which in turn allow evaluation of the beta function, which encodes the dependence of coupling for an interaction on an energy scale .

In solid-state physics, the tight-binding model is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the LCAO method used in chemistry. Tight-binding models are applied to a wide variety of solids. The model gives good qualitative results in many cases and can be combined with other models that give better results where the tight-binding model fails. Though the tight-binding model is a one-electron model, the model also provides a basis for more advanced calculations like the calculation of surface states and application to various kinds of many-body problem and quasiparticle calculations.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator

A signal-flow graph or signal-flowgraph (SFG), invented by Claude Shannon, but often called a Mason graph after Samuel Jefferson Mason who coined the term, is a specialized flow graph, a directed graph in which nodes represent system variables, and branches represent functional connections between pairs of nodes. Thus, signal-flow graph theory builds on that of directed graphs, which includes as well that of oriented graphs. This mathematical theory of digraphs exists, of course, quite apart from its applications.

In the study of differential equations, the Loewy decomposition breaks every linear ordinary differential equation (ODE) into what are called largest completely reducible components. It was introduced by Alfred Loewy.

Data-driven control systems are a broad family of control systems, in which the identification of the process model and/or the design of the controller are based entirely on experimental data collected from the plant.

In the mathematical theory of structural rigidity, the Cayley configuration space of a linkage over a set of its non-edges , called Cayley parameters, is the set of distances attained by over all its frameworks, under some -norm. In other words, each framework of the linkage prescribes a unique set of distances to the non-edges of , so the set of all frameworks can be described by the set of distances attained by any subset of these non-edges. Note that this description may not be a bijection. The motivation for using distance parameters is to define a continuous quadratic branched covering from the configuration space of a linkage to a simpler, often convex, space. Hence, obtaining a framework from a Cayley configuration space of a linkage over some set of non-edges is often a matter of solving quadratic equations.

A graph neural network (GNN) belongs to a class of artificial neural networks for processing data that can be represented as graphs.

References