Matground

Last updated
An example of what prehistoric Microbial matgrounds may have looked like. The wrinkled "elephant skin" texture is seen throughout most Precambrian sediments. Runzelmarken.jpg
An example of what prehistoric Microbial matgrounds may have looked like. The wrinkled "elephant skin" texture is seen throughout most Precambrian sediments.

Matgrounds are strong surface layers of seabed-hardening bacterial fauna preserved in the Proterozoic and lower Cambrian. Wrinkled matgrounds are informally named "elephant skin" because of its wrinkled surface in the fossil record. Matgrounds supported themselves until early burrowing worms were ubiquitous enough to unharden them. [1] [2] [3] [4] Burrowing animals broke down the hardy mats to further penetrate the underlying sediment for protection and feeding. [5] Once matgrounds disappeared, exceptional preservation of lagerstätten such as the Burgess Shale or Ediacara Hills also did so too. [5] Trace fossils such as Treptichnus are evidence for soft-bodied burrowers more anatomically complex than the Ediacaran biota that also caused the matgrounds disappearance. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Ediacaran</span> Third and last period of the Neoproterozoic Era

The Ediacaran Period is a geological period of the Neoproterozoic Era that spans 96 million years from the end of the Cryogenian Period at 635 Mya, to the beginning of the Cambrian Period at 538.8 Mya. It is the last period of the Proterozoic Eon as well as the so-called Precambrian "supereon", before the beginning of the subsequent Cambrian Period marks the start of the Phanerozoic Eon, where recognizable fossil evidence of life becomes common.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<i>Treptichnus</i> Preserved burrow of an animal

Treptichnus is the preserved burrow of an animal. As such, it is regarded as the earliest widespread complex trace fossil. Its earliest appearance, around 542 mya, which was contemporaneous with the last of the Ediacaran biota, is used to help define the dividing line, considered geologically at 541 mya, between the Ediacaran and Cambrian periods. It is last seen in the fossil record during the Cenomanian.

<i>Hiemalora</i> Genus of cnidarians

Hiemalora is a fossil of the Ediacaran biota, reaching around 3 cm in diameter, which superficially resembles a sea anemone. The genus has a sack-like body with faint radiating lines originally interpreted as tentacles, but discovery of a frond-like structure seemingly attached to some Heimalora has added weight to a competing interpretation: that it represents the holdfast of a larger organism.

<span class="mw-page-title-main">Ediacaran biota</span> All organisms of the Ediacaran Period (c. 635–538.8 million years ago)

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

Oldhamia is an ichnogenus describing burrows produced by worm-like organisms mining underneath microbial mats. It was common from the Early Cambrian deep-water deposits.

<i>Diplocraterion</i> Trace fossil

Diplocraterion is an ichnogenus describing vertical U-shaped burrows having a spreite between the two limbs of the U. The spreite of an individual Diplocraterion trace can be either protrusive or retrusive. Some ichnospecies have both types. The presence/absence of funnel-shaped openings should not be used as an ichnotaxobase due to the high probability that the upper portions of the trace may have been eroded away. Observation of the orientation of Diplocraterion in the field is frequently used to determine the way up of rock strata at outcrop.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 million years ago in the Cambrian Period of early Paleozoic when there was a sudden radiation of complex life and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

Ediacaran type preservation relates to the dominant preservational mode in the Ediacaran period, where Ediacaran organisms were preserved as casts on the surface of microbial mats.

<span class="mw-page-title-main">Stratigraphy of the Cambrian</span>

The Stratigraphy of the Cambrian period currently has several schemes used for ordering geologic formations from the period. The International Commission on Stratigraphy−ICS scheme has set a stratotype section for the base of the Cambrian, dated quite accurately to 538.8 ± 0.2 million years ago. Russian and Chinese scientists have developed a different scheme.

<i>Helminthopsis</i> Trace fossil

Helminthopsis is the ichnogenus of a type of trace fossil that is found preserved on the bedding planes of fine-grained sedimentary rocks. It is characterized by short, curvilinear, non-branching, parallel-sided, unlined traces on bedding surfaces. It is thought to represent the submarine feeding trails of an invertebrate organism that worked the surface of muddy substrates in search of food. Because Helminthopsis traces never cross over themselves, the ichnogenus is distinguished from similar traces assigned to the Gordia ichnogenus. The similar sounding, but now obsolete, ichnogenus Helminthoida refers to a somewhat similar trace characterized by regular, back-and-forth meanders, whereas Helminthopsis traces are irregular.

<span class="mw-page-title-main">Chapel Island Formation</span> Sedimentary formation in the Burin Peninsula, Newfoundland, Canada

The Chapel Island Formation is a sedimentary formation from the Burin Peninsula, Newfoundland, Canada. It is a succession of siliciclastic deposits, over 1,000 metres (3,300 ft) thick, that were deposited during the latest Ediacaran and earliest Cambrian.

<span class="mw-page-title-main">Nama Group</span>

The Nama Group is a 125,000 square kilometres (48,000 sq mi) megaregional Vendian to Cambrian group of stratigraphic sequences deposited in the Nama foreland basin in central and southern Namibia. The Nama Basin is a peripheral foreland basin, and the Nama Group was deposited in two early basins, the Zaris and Witputs, to the north, while the South African Vanrhynsdorp Group was deposited in the southern third. The Nama Group is made of fluvial and shallow-water marine sediments, both siliciclastic and carbonate. La Tinta Group in Argentina is considered equivalent to Nama Group.

<i>Nereites</i> Trace fossil

Nereites is a genus of trace fossil. Modern tracemakers of incipient Nereites include worm-like organisms, horseshoe crabs and hermit crabs. Traditionally, two models have been proposed for Nereites:

  1. in the ‘worm model’, Nereites is a feeding burrow produced by wormlike organisms, probing and backfilling laterally
  2. in the ‘arthropod model’, the characteristic lobes are pressure-release structures made by arthropod legs. According to this interpretation, Nereites is a locomotion trail
<span class="mw-page-title-main">Random Formation</span>

The Random Formation is a rock unit in Newfoundland dating to the early Cambrian period, dominated by tidal quartz arenites deposited in a near-shore environment, but also incorporating intertidal and open-shelf deposits, including glauconitic and mud-cracked mudstones, and red channel sandstones. It was deposited quickly and is approximately 175 m thick. The Blue Pinion Formation was originally recognized as a separate formation, but is now interpreted as an expression of the Random Formation.

<i>Archaeaspinus fedonkini</i>

Archaeaspinus fedonkini is an extinct proarticulatan organism from the Late Precambrian (Ediacaran) period.

Tonganoxichnus is a Pennsylvanian to Permian trace fossil that has been found in North America.

References

  1. Ediacaran matground ecology persisted into the earliest Cambrian, by Luis A. Buatois, Guy M. Narbonne, M. Gabriela Mángano, Noelia B. Carmona & Paul Myrow, Nature Communications volume 5, Article number: 3544 (2014), publ. 28 March 2014
  2. Matground Structures and Redox Facies, by Friedrich Pflüger, Palaios 1999, V. 14, 25-39
  3. Ediacaran matground ecology persisted into the earliest Cambrian, Luis A Buatois, Guy M Narbonne, M Gabriela Mángano, Noelia B Carmona, Paul Myrow, Nature Communications, 2014 March 28;5:3544.
  4. Youtube video How Worm Holes Ended Wormworld, by PBS Eons.
  5. 1 2 Seilacher, Adolf; Luis A. Buatoisb; M. Gabriela Mángano (2005-10-07). "Trace fossils in the Ediacaran–Cambrian transition: Behavioral diversification, ecological turnover and environmental shift". Palaeogeography, Palaeoclimatology, Palaeoecology. 227 (4): 323–356. Bibcode:2005PPP...227..323S. doi:10.1016/j.palaeo.2005.06.003.
  6. "Life in the Cambrian". Archived from the original on 2006-02-20. Retrieved 2006-03-09.
  7. Altermann, Wladyslaw (2002) [2002-07-01]. Precambrian Sedimentary Environments. Blackwell Publishing. ISBN   0-632-06415-3.