Mathematical Biology

Last updated

Mathematical Biology I: An Introduction
Mathematical Biology.jpg
Second edition
Author James D. Murray
LanguageEnglish
Subject Mathematical biology
Publisher Springer
Publication date
  • 1989
  • Second edition in 1993
  • Third edition in 2002
Publication placeUnited States
Media typePrint
Pages551
ISBN 0-387-95223-3

Mathematical Biology is a two-part monograph on mathematical biology first published in 1989 by the applied mathematician James D. Murray. It is considered to be a classic in the field [1] and sweeping in scope. [2]

Contents

Mathematical Biology II: Spatial Models and Biomedical Applications
Author James D. Murray
LanguageEnglish
Subject Mathematical biology
Publisher Springer
Publication date
  • 1989
  • Second edition in 1993
  • Third edition in 2003
Publication placeUnited States
Media typePrint
Pages811
ISBN 0-387-95228-4

Part I: An Introduction

Part I of Mathematical Biology covers population dynamics, reaction kinetics, oscillating reactions, and reaction-diffusion equations.

Part II: Spatial Models and Biomedical Applications

Part II of Mathematical Biology focuses on pattern formation and applications of reaction-diffusion equations. Topics include: predator-prey interactions, chemotaxis, wound healing, epidemic models, and morphogenesis.

Impact

Since its initial publication, the monograph has come to be seen as a highly influential work in the field of mathematical biology. It serves as the essential text for most high level mathematical biology courses around the world, and is credited with transforming the field from a niche subject into a standard research area of applied mathematics. [10]

References

  1. Edelstein-Keshet, Leah (2004). Murray, James D. (ed.). "Featured Review: Mathematical Biology". SIAM Review. 46 (1): 143–147. ISSN   0036-1445. JSTOR   20453477.
  2. Bell, Jonathan G. (1990). "Mathematical Biology (J. D. Murray)" . SIAM Review. 32 (3): 487–489. doi:10.1137/1032093. ISSN   0036-1445.
  3. Cook, J.; Tyson, R.; White, J.; Rushe, R.; Gottman, J.; Murray, J. (1995). "Mathematics of Marital Conflict: Qualitative Dynamic Mathematical Modeling of Marital Interaction". Journal of Family Psychology. 9 (2): 110–130. doi:10.1037/0893-3200.9.2.110. S2CID   122029386.
  4. Gottman, J.; Swanson, C.; Murray, J. (1999). "The Mathematics of Marital Conflict: Dynamic Mathematical Nonlinear Modeling of Newlywed Marital Interaction". Journal of Family Psychology. 13 (1): 3–19. doi:10.1037/0893-3200.13.1.3. S2CID   53410111.
  5. Murray, J. D.; Myerscough, M. R. (1991-04-07). "Pigmentation pattern formation on snakes" . Journal of Theoretical Biology. 149 (3): 339–360. Bibcode:1991JThBi.149..339M. doi:10.1016/S0022-5193(05)80310-8. ISSN   0022-5193. PMID   2062100.
  6. Sherratt, Jonathan A.; Murray, James Dickson; Clarke, Bryan Campbell (1990-07-23). "Models of epidermal wound healing" . Proceedings of the Royal Society of London. Series B: Biological Sciences. 241 (1300): 29–36. doi:10.1098/rspb.1990.0061. PMID   1978332. S2CID   20717487.
  7. Sherratt, J. A.; Murray, J. D. (1991-04-01). "Mathematical analysis of a basic model for epidermal wound healing" . Journal of Mathematical Biology. 29 (5): 389–404. doi:10.1007/BF00160468. ISSN   1432-1416. PMID   1831488. S2CID   37551844.
  8. Swanson, Kristin R.; Bridge, Carly; Murray, J. D.; Alvord, Ellsworth C. (2003-12-15). "Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion" . Journal of the Neurological Sciences. 216 (1): 1–10. doi:10.1016/j.jns.2003.06.001. ISSN   0022-510X. PMID   14607296. S2CID   15744550.
  9. Källén, A.; Arcuri, P.; Murray, J. D. (1985-10-07). "A simple model for the spatial spread and control of rabies" . Journal of Theoretical Biology. 116 (3): 377–393. Bibcode:1985JThBi.116..377K. doi:10.1016/S0022-5193(85)80276-9. ISSN   0022-5193. PMID   4058027.
  10. Maini, Philip K.; Chaplain, Mark A. J.; Lewis, Mark A.; Sherratt, Jonathan A. (2021-12-04). "Special Collection: Celebrating J.D. Murray's Contributions to Mathematical Biology". Bulletin of Mathematical Biology. 84 (1): 13. doi: 10.1007/s11538-021-00955-8 . ISSN   1522-9602. PMID   34865189. S2CID   244897975.