Matsubara frequency

Last updated

In thermal quantum field theory, the Matsubara frequency summation (named after Takeo Matsubara) is a technique used to simplify calculations involving Euclidean (imaginary time) path integrals. [1]

Contents

In thermal quantum field theory, bosonic and fermionic quantum fields are respectively periodic or antiperiodic in imaginary time , with periodicity . Matsubara summation refers to the technique of expanding these fields in Fourier series

The frequencies are called the Matsubara frequencies, taking values from either of the following sets (with ):

bosonic frequencies:
fermionic frequencies:

which respectively enforce periodic and antiperiodic boundary conditions on the field .

Once such substitutions have been made, certain diagrams contributing to the action take the form of a so-called Mastubara summation

The summation will converge if tends to 0 in limit in a manner faster than . The summation over bosonic frequencies is denoted as (with ), while that over fermionic frequencies is denoted as (with ). is the statistical sign.

In addition to thermal quantum field theory, the Matsubara frequency summation method also plays an essential role in the diagrammatic approach to solid-state physics, namely, if one considers the diagrams at finite temperature. [2] [3] [4]

Generally speaking, if at , a certain Feynman diagram is represented by an integral , at finite temperature it is given by the sum .

Summation formalism

General formalism

Figure 1. Matsubara frequency 1.svg
Figure 1.
Figure 2. Matsubara frequency 2.svg
Figure 2.

The trick to evaluate Matsubara frequency summation is to use a Matsubara weighting function hη(z) that has simple poles located exactly at . [4] The weighting functions in the boson case η = +1 and fermion case η = −1 differ. The choice of weighting function will be discussed later. With the weighting function, the summation can be replaced by a contour integral surrounding the imaginary axis.

As in Fig. 1, the weighting function generates poles (red crosses) on the imaginary axis. The contour integral picks up the residue of these poles, which is equivalent to the summation. This procedure is sometimes called Sommerfeld-Watson transformation. [5]

By deformation of the contour lines to enclose the poles of g(z) (the green cross in Fig. 2), the summation can be formally accomplished by summing the residue of g(z)hη(z) over all poles of g(z),

Note that a minus sign is produced, because the contour is deformed to enclose the poles in the clockwise direction, resulting in the negative residue.

Choice of Matsubara weighting function

To produce simple poles on boson frequencies , either of the following two types of Matsubara weighting functions can be chosen

depending on which half plane the convergence is to be controlled in. controls the convergence in the left half plane (Re z < 0), while controls the convergence in the right half plane (Re z > 0). Here is the Bose–Einstein distribution function.

The case is similar for fermion frequencies. There are also two types of Matsubara weighting functions that produce simple poles at

controls the convergence in the left half plane (Re z < 0), while controls the convergence in the right half plane (Re z > 0). Here is the Fermi–Dirac distribution function.

In the application to Green's function calculation, g(z) always have the structure

which diverges in the left half plane given 0 < τ < β. So as to control the convergence, the weighting function of the first type is always chosen . However, there is no need to control the convergence if the Matsubara summation does not diverge. In that case, any choice of the Matsubara weighting function will lead to identical results.

Table of Matsubara frequency summations

The following table contains for some simple rational functions g(z). The symbol η = ±1 is the statistical sign, +1 for bosons and -1 for fermions.

[1]
[1]
[2]
[2]

[1] Since the summation does not converge, the result may differ upon different choice of the Matsubara weighting function.

[2] (1  2) denotes the same expression as the before but with index 1 and 2 interchanged.

Applications in physics

Zero temperature limit

In this limit , the Matsubara frequency summation is equivalent to the integration of imaginary frequency over imaginary axis.

Some of the integrals do not converge. They should be regularized by introducing the frequency cutoff , and then subtracting the divergent part (-dependent) from the integral before taking the limit of . For example, the free energy is obtained by the integral of logarithm,

meaning that at zero temperature, the free energy simply relates to the internal energy below the chemical potential. Also the distribution function is obtained by the following integral

which shows step function behavior at zero temperature.

Time domain

Consider a function G(τ) defined on the imaginary time interval (0,β). It can be given in terms of Fourier series,

where the frequency only takes discrete values spaced by 2π/β.

The particular choice of frequency depends on the boundary condition of the function G(τ). In physics, G(τ) stands for the imaginary time representation of Green's function

It satisfies the periodic boundary condition G(τ+β)=G(τ) for a boson field. While for a fermion field the boundary condition is anti-periodic G(τ + β) = G(τ).

Given the Green's function G() in the frequency domain, its imaginary time representation G(τ) can be evaluated by Matsubara frequency summation. Depending on the boson or fermion frequencies that is to be summed over, the resulting G(τ) can be different. To distinguish, define

with

Note that τ is restricted in the principal interval (0,β). The boundary condition can be used to extend G(τ) out of the principal interval. Some frequently used results are concluded in the following table.

Operator switching effect

The small imaginary time plays a critical role here. The order of the operators will change if the small imaginary time changes sign.

Distribution function

The evaluation of distribution function becomes tricky because of the discontinuity of Green's function G(τ) at τ = 0. To evaluate the summation

both choices of the weighting function are acceptable, but the results are different. This can be understood if we push G(τ) away from τ = 0 a little bit, then to control the convergence, we must take as the weighting function for , and for .

Bosons

Fermions

Free energy

Bosons

Fermions

Diagram evaluations

Frequently encountered diagrams are evaluated here with the single mode setting. Multiple mode problems can be approached by a spectral function integral. Here is a fermionic Matsubara frequency, while is a bosonic Matsubara frequency.

Fermion self energy

Particle-hole bubble

Particle-particle bubble

Appendix: Properties of distribution functions

Distribution functions

The general notation stands for either Bose (η = +1) or Fermi (η = −1) distribution function

If necessary, the specific notations nB and nF are used to indicate Bose and Fermi distribution functions respectively

Relation to hyperbolic functions

The Bose distribution function is related to hyperbolic cotangent function by

The Fermi distribution function is related to hyperbolic tangent function by

Parity

Both distribution functions do not have definite parity,

Another formula is in terms of the function

However their derivatives have definite parity.

Bose–Fermi transmutation

Bose and Fermi distribution functions transmute under a shift of the variable by the fermionic frequency,

However shifting by bosonic frequencies does not make any difference.

Derivatives

First order

In terms of product:

In the zero temperature limit:

Second order

Formula of difference

Case a = 0

Case a → 0

Case b → 0

The function cη

Definition:

For Bose and Fermi type:

Relation to hyperbolic functions

It is obvious that is positive definite.

To avoid overflow in the numerical calculation, the tanh and coth functions are used

Case a = 0

Case b = 0

Low temperature limit

For a = 0:

For b = 0:

In general,

See also

Agustin Nieto: Evaluating Sums over the Matsubara Frequencies. arXiv:hep-ph/9311210
Github repository: MatsubaraSum A Mathematica package for Matsubara frequency summation.
A. Taheridehkordi, S. Curnoe, J.P.F. LeBlanc: Algorithmic Matsubara Integration for Hubbard-like models.. arXiv:cond-mat/1808.05188

Related Research Articles

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

<span class="mw-page-title-main">Bose gas</span> State of matter of many bosons

An ideal Bose gas is a quantum-mechanical phase of matter, analogous to a classical ideal gas. It is composed of bosons, which have an integer value of spin and abide by Bose–Einstein statistics. The statistical mechanics of bosons were developed by Satyendra Nath Bose for a photon gas and extended to massive particles by Albert Einstein, who realized that an ideal gas of bosons would form a condensate at a low enough temperature, unlike a classical ideal gas. This condensate is known as a Bose–Einstein condensate.

In physics, the Polyakov action is an action of the two-dimensional conformal field theory describing the worldsheet of a string in string theory. It was introduced by Stanley Deser and Bruno Zumino and independently by L. Brink, P. Di Vecchia and P. S. Howe in 1976, and has become associated with Alexander Polyakov after he made use of it in quantizing the string in 1981. The action reads:

<span class="mw-page-title-main">Dirac comb</span> Periodic distribution ("function") of "point-mass" Dirac delta sampling

In mathematics, a Dirac comb is a periodic function with the formula for some given period . Here t is a real variable and the sum extends over all integers k. The Dirac delta function and the Dirac comb are tempered distributions. The graph of the function resembles a comb, hence its name and the use of the comb-like Cyrillic letter sha (Ш) to denote the function.

The Havriliak–Negami relaxation is an empirical modification of the Debye relaxation model in electromagnetism. Unlike the Debye model, the Havriliak–Negami relaxation accounts for the asymmetry and broadness of the dielectric dispersion curve. The model was first used to describe the dielectric relaxation of some polymers, by adding two exponential parameters to the Debye equation:

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> Map projection system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

In mathematics, in particular in algebraic geometry and differential geometry, Dolbeault cohomology (named after Pierre Dolbeault) is an analog of de Rham cohomology for complex manifolds. Let M be a complex manifold. Then the Dolbeault cohomology groups depend on a pair of integers p and q and are realized as a subquotient of the space of complex differential forms of degree (p,q).

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, Lindelöf's theorem is a result in complex analysis named after the Finnish mathematician Ernst Leonard Lindelöf. It states that a holomorphic function on a half-strip in the complex plane that is bounded on the boundary of the strip and does not grow "too fast" in the unbounded direction of the strip must remain bounded on the whole strip. The result is useful in the study of the Riemann zeta function, and is a special case of the Phragmén–Lindelöf principle. Also, see Hadamard three-lines theorem.

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and dispersive effects in the medium. There are two main kinds of solitons:

The prolate spheroidal wave functions are eigenfunctions of the Laplacian in prolate spheroidal coordinates, adapted to boundary conditions on certain ellipsoids of revolution. Related are the oblate spheroidal wave functions.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

<span class="mw-page-title-main">Peregrine soliton</span> Analytic solution of the nonlinear Schrödinger equation

The Peregrine soliton is an analytic solution of the nonlinear Schrödinger equation. This solution was proposed in 1983 by Howell Peregrine, researcher at the mathematics department of the University of Bristol.

In combustion, Frank-Kamenetskii theory explains the thermal explosion of a homogeneous mixture of reactants, kept inside a closed vessel with constant temperature walls. It is named after a Russian scientist David A. Frank-Kamenetskii, who along with Nikolay Semenov developed the theory in the 1930s.

A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.

In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function values only at imaginary times or Matsubara frequencies.

References

  1. Altland, Alexander; Simons, Ben D. (2010-03-11). Condensed Matter Field Theory. Cambridge University Press. doi:10.1017/cbo9780511789984. ISBN   978-0-521-76975-4.
  2. A. Abrikosov, L. Gor'kov, I. Dzyaloshinskii: Methods of Quantum Field Theory in Statistical Physics., New York, Dover Publ., 1975, ISBN   0-486-63228-8
  3. [Piers Coleman]: Introduction to Many-Body Physics., Cambridge University Press., 2015, ISBN   978-0-521-86488-6
  4. 1 2 Mahan, Gerald D. (2000). Many-particle physics (3rd ed.). New York: Kluwer Academic/Plenum Publishers. ISBN   0-306-46338-5. OCLC   43864386.
  5. Summation of series: Sommerfeld-Watson transformation, Lecture notes , M. G. Rozman