Matthew Dalby

Last updated

Matthew Dalby
Born (1972-10-19) 19 October 1972 (age 51)
NationalityEnglish
CitizenshipUK
Alma mater Queen Mary University of London
Known for nanotopography, cell-material interface
Scientific career
Fields biomaterials, mesenchymal stem cells, tissue engineering
Institutions University of Glasgow
Thesis Hydroxyapatite/polyethylene composite: an in vitro study of osteoblast response to composition and topography  (2001)
Doctoral advisor William Bonfield, Lucy Di Silvio
Other academic advisors Adam S. G. Curtis
Website Professor Matthew Dalby Centre for the Cellular Microenvironment

Matthew John Dalby FRSE is Professor of Cell Engineering at the University of Glasgow. [1] His research is focused on mesenchymal stem cell interactions with nanotopography, [2] [3] with particular focus on the use of metabolomics, [4] to study mechanotransduction. [5]

He was part of a team, led by Prof Manuel Salmeron-Sanchez, who developed bone growth technology that was used in Eva the Large Münsterländer to save her leg from amputation. [6]

He completed his PhD in Biomedical Materials at Queen Mary University of London in 2001. He has an h-index of 80. [7]

Related Research Articles

<span class="mw-page-title-main">Stem cell</span> Undifferentiated biological cells that can differentiate into specialized cells

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

<span class="mw-page-title-main">Embryoid body</span> Three-dimensional aggregate of pluripotent stem cells

Embryoid bodies (EBs) are three-dimensional aggregates formed by pluripotent stem cells. These include embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC)

<span class="mw-page-title-main">Regenerative medicine</span> Field of medicine involved in regenerating tissues

Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by stimulating the body's own repair mechanisms to functionally heal previously irreparable tissues or organs.

<span class="mw-page-title-main">Cell therapy</span> Therapy in which cellular material is injected into a patient

Cell therapy is a therapy in which viable cells are injected, grafted or implanted into a patient in order to effectuate a medicinal effect, for example, by transplanting T-cells capable of fighting cancer cells via cell-mediated immunity in the course of immunotherapy, or grafting stem cells to regenerate diseased tissues.

<span class="mw-page-title-main">Adult stem cell</span> Multipotent stem cell in the adult body

Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells, they can be found in juvenile, adult animals, and humans, unlike embryonic stem cells.

<span class="mw-page-title-main">Chondroblast</span> Mesenchymal progenitor cell that forms a chondrocyte

Chondroblasts, or perichondrial cells, is the name given to mesenchymal progenitor cells in situ which, from endochondral ossification, will form chondrocytes in the growing cartilage matrix. Another name for them is subchondral cortico-spongious progenitors. They have euchromatic nuclei and stain by basic dyes.

Stem-cell therapy uses stem cells to treat or prevent a disease or condition. As of 2016, the only established therapy using stem cells is hematopoietic stem cell transplantation. This usually takes the form of a bone marrow transplantation, but the cells can also be derived from umbilical cord blood. Research is underway to develop various sources for stem cells as well as to apply stem-cell treatments for neurodegenerative diseases and conditions such as diabetes and heart disease.

<span class="mw-page-title-main">Mesenchyme</span> Type of animal embryonic connective tissue

Mesenchyme is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo.

<span class="mw-page-title-main">Microcarrier</span>

A microcarrier is a support matrix that allows for the growth of adherent cells in bioreactors. Instead of on a flat surface, cells are cultured on the surface of spherical microcarriers so that each particle carries several hundred cells, and therefore expansion capacity can be multiplied several times over. It provides a straightforward way to scale up culture systems for industrial production of cell or protein-based therapies, or for research purposes.

Mesenchymal stem cells (MSCs) are multipotent cells found in multiple human adult tissues, including bone marrow, synovial tissues, and adipose tissues. Since they are derived from the mesoderm, they have been shown to differentiate into bone, cartilage, muscle, and adipose tissue. MSCs from embryonic sources have shown promise scientifically while creating significant controversy. As a result, many researchers have focused on adult stem cells, or stem cells isolated from adult humans that can be transplanted into damaged tissue.

Amniotic stem cells are the mixture of stem cells that can be obtained from the amniotic fluid as well as the amniotic membrane. They can develop into various tissue types including skin, cartilage, cardiac tissue, nerves, muscle, and bone. The cells also have potential medical applications, especially in organ regeneration.

<span class="mw-page-title-main">Mesenchymal stem cell</span> Multipotent, non-hematopoietic adult stem cells present in multiple tissues

Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells, are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts, chondrocytes, myocytes and adipocytes.

Adult mesenchymal stem cells are being used by researchers in the fields of regenerative medicine and tissue engineering to artificially reconstruct human tissue which has been previously damaged. Mesenchymal stem cells are able to differentiate, or mature from a less specialized cell to a more specialized cell type, to replace damaged tissues in various organs.

Nanotopography refers to specific surface features which form or are generated at the nanoscopic scale. While the term can be used to describe a broad range of applications ranging from integrated circuits to microfluidics, in practice it typically applied to sub-micron textured surfaces as used in biomaterials research.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product. 

Treena Livingston Arinzeh is an American biomedical engineer and academic.

Richard Oreffo FRSB FIOR is a British–Nigerian physician and Professor of Musculoskeletal Science at the University of Southampton. His research considers skeletal biology and the fundamental mechanisms that underpin skeletal stem cell differentiation. In 2020, he launched the Cowrie Scholarship Foundation, which supports Black British students in their university studies.

<span class="mw-page-title-main">Mohamadreza Baghaban Eslaminejad</span>

Mohamadreza Baghaban Eslaminejad is the director of the Adult Stem Cell Lab and histology/embryology Professor at the Royan Institute where he held a multi-departmental professorship in bioengineering, tissue engineering, regenerative medicine, and stem cell therapy. Eslaminejad studies have been cited over 4000 times. He is best known for Hard Tissue Engineering and utilizing Mesenchymal stem cells for treatment of orthopedic diseases.

<span class="mw-page-title-main">Stem cell fat grafting</span>

Stem cellfat grafting is autotransplantation of adipose-derived stem cells (ADSCs) extracted from fat-abundant donor sites to other areas such as the face, breast, and hip to reconstruct the operative areas into desirable shapes. ADSCs are multipotent stem cells found in adipose tissues, displaying similar differentiation potentials to bone marrow-derived mesenchymal stem cells (BM-MSCs).

References

  1. "Research Institutes - Institute of Molecular, Cell and Systems Biology - All staff - Dr Matthew J Dalby". University of Glasgow. 22 October 2020. Retrieved 13 April 2021.
  2. McNamara, L. E.; McMurray, R. J.; Biggs, M. J. P.; Kantawong, F.; Oreffo, R. O. C.; Dalby, M. J. (2010). "Nanotopographical Control of Stem Cell Differentiation". Journal of Tissue Engineering. 1 (1): 120623. doi: 10.4061/2010/120623 . ISSN   2041-7314. PMC   3042612 . PMID   21350640.
  3. Dalby, Matthew J.; Gadegaard, Nikolaj; Tare, Rahul; Andar, Abhay; Riehle, Mathis O.; Herzyk, Pawel; Wilkinson, Chris D. W.; Oreffo, Richard O. C. (2007). "The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder". Nature Materials. 6 (12): 997–1003. Bibcode:2007NatMa...6..997D. doi:10.1038/nmat2013. ISSN   1476-1122. PMID   17891143.
  4. "Professor Matthew Dalby". University of Glasgow . Retrieved 4 April 2018.
  5. McMurray RJ, Dalby MJ, Tsimbouri PM (May 2015). "Using biomaterials to study stem cell mechanotransduction, growth and differentiation" (PDF). Journal of Tissue Engineering and Regenerative Medicine. 9 (5): 528–39. doi: 10.1002/term.1957 . PMID   25370612. S2CID   39642567.
  6. "World first for dog's broken leg - BBC News" via www.youtube.com.
  7. "Matthew Dalby". Google Scholar . Retrieved 1 November 2018.