Maurer's cleft

Last updated

Maurer's clefts are membranous structures seen in the red blood cell during infection with Plasmodium falciparum . The function and contents of Maurer's clefts are not completely known; however, they appear to play a role in trafficking of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and other adhesins to the red blood cell surface.

Contents

Description

Transmission electron micrograph of red blood cell infected with P. falciparum. Maurer's clefts are marked with arrows. Scale bar is 500 nm. RBC with P falciparum Maurers clefts highlighted.jpg
Transmission electron micrograph of red blood cell infected with P. falciparum. Maurer's clefts are marked with arrows. Scale bar is 500 nm.

Maurer's clefts appear in the cytosol of red blood cells 2 to 4 hours after invasion by P. falciparum. [1] They originally appear as small membrane-bound vacuoles, likely originating from the parasitophorous vacuole membrane. [1] However, as the parasite ages Maurer's clefts expand to form single flattened cisternae, 500-nanometers wide. [2] In parasite strains lacking the protein REX1, Maurer's clefts instead appear as stacks of cisternae, similar to stacks of Golgi bodies. [1]

For the first half of the parasite life cycle, Maurer's clefts are highly mobile in the host cytoplasm. However, as parasites transition to the trophozoite stage Maurer's clefts become fixed in place. [3] This fixation coincides with PfEMP1 appearing on the host cell surface. [1] The structures tethering Maurer's clefts to the host cell membrane are visible by transmission electron microscopy as cylindrical structures 200–300 nanometers long and 30 nanometers wide. [1] The structure of these tethers is poorly defined, but they appear to contain the parasite protein MAHRP2 and/or involve host actin. [3]

Function

Maurer's clefts are thought function as sorting centers, through which parasite proteins are trafficked on their way to the red blood cell surface. [1] The most important of these are parasite proteins involved in binding of infected red blood cells to the host blood vessels, such as PfEMP1s, repetitive interspersed family proteins (RIFINs), and subtelomeric variant open reading frame proteins (STEVORs), all of which localize to the Maurer's clefts on their way to the red blood cell surface. [1] A number of other parasite proteins involved in modifying the host cell also localize to the Maurer's clefts such as PfMC-2TMs, FIKK kinases, as well as some members of the Plasmodium helical interspersed subtelomeric (PHIST) family of parasite proteins. [1]

History

Images from original description of Maurer's clefts in 1902. Images show red blood cells infected with Plasmodium falciparum stained with alkaline methylene blue. Maurer's Clefts G Maurer 1902.jpg
Images from original description of Maurer's clefts in 1902. Images show red blood cells infected with Plasmodium falciparum stained with alkaline methylene blue.

Georg Maurer first described the structures now known as Maurer's clefts in 1902, when he described methylene blue-stained spots in red blood cells containing older P. falciparum parasites. [2] He proposed that these spots were due to injury of the host cell and consumption of host cell materials by the parasite. [1] A more detailed description of Maurer's clefts using electron microscopy was published by William Trager, Maria Rudzinska, and Phyllis Bradbury in 1966. [4]

Related Research Articles

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

<span class="mw-page-title-main">CD36</span> Mammalian protein found in Homo sapiens

CD36, also known as platelet glycoprotein 4, fatty acid translocase (FAT), scavenger receptor class B member 3 (SCARB3), and glycoproteins 88 (GP88), IIIb (GPIIIB), or IV (GPIV) is a protein that in humans is encoded by the CD36 gene. The CD36 antigen is an integral membrane protein found on the surface of many cell types in vertebrate animals. It imports fatty acids inside cells and is a member of the class B scavenger receptor family of cell surface proteins. CD36 binds many ligands including collagen, thrombospondin, erythrocytes parasitized with Plasmodium falciparum, oxidized low density lipoprotein, native lipoproteins, oxidized phospholipids, and long-chain fatty acids.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<span class="mw-page-title-main">Merozoite surface protein</span>

Merozoitesurface proteins are both integral and peripheral membrane proteins found on the surface of a merozoite, an early life cycle stage of a protozoan. Merozoite surface proteins, or MSPs, are important in understanding malaria, a disease caused by protozoans of the genus Plasmodium. During the asexual blood stage of its life cycle, the malaria parasite enters red blood cells to replicate itself, causing the classic symptoms of malaria. These surface protein complexes are involved in many interactions of the parasite with red blood cells and are therefore an important topic of study for scientists aiming to combat malaria.

<span class="mw-page-title-main">Microneme</span>

Micronemes are secretory organelles, possessed by parasitic apicomplexans. Micronemes are located on the apical third of the protozoan body. They are surrounded by a typical unit membrane. On electron microscopy they have an electron-dense matrix due to the high protein content. They are specialized secretory organelles important for host-cell invasion and gliding motility.

Subtelomeres are segments of DNA between telomeric caps and chromatin.

Southeast Asian ovalocytosis is a blood disorder that is similar to, but distinct from hereditary elliptocytosis. It is common in some communities in Malaysia and Papua New Guinea, as it confers some resistance to cerebral Falciparum Malaria.

Antigenic variation or antigenic alteration refers to the mechanism by which an infectious agent such as a protozoan, bacterium or virus alters the proteins or carbohydrates on its surface and thus avoids a host immune response, making it one of the mechanisms of antigenic escape. It is related to phase variation. Antigenic variation not only enables the pathogen to avoid the immune response in its current host, but also allows re-infection of previously infected hosts. Immunity to re-infection is based on recognition of the antigens carried by the pathogen, which are "remembered" by the acquired immune response. If the pathogen's dominant antigen can be altered, the pathogen can then evade the host's acquired immune system. Antigenic variation can occur by altering a variety of surface molecules including proteins and carbohydrates. Antigenic variation can result from gene conversion, site-specific DNA inversions, hypermutation, or recombination of sequence cassettes. The result is that even a clonal population of pathogens expresses a heterogeneous phenotype. Many of the proteins known to show antigenic or phase variation are related to virulence.

<span class="mw-page-title-main">Malaria antigen detection tests</span>

Malaria antigen detection tests are a group of commercially available rapid diagnostic tests of the rapid antigen test type that allow quick diagnosis of malaria by people who are not otherwise skilled in traditional laboratory techniques for diagnosing malaria or in situations where such equipment is not available. There are currently over 20 such tests commercially available. The first malaria antigen suitable as target for such a test was a soluble glycolytic enzyme Glutamate dehydrogenase. None of the rapid tests are currently as sensitive as a thick blood film, nor as cheap. A major drawback in the use of all current dipstick methods is that the result is essentially qualitative. In many endemic areas of tropical Africa, however, the quantitative assessment of parasitaemia is important, as a large percentage of the population will test positive in any qualitative assay.

Malaria vaccines are vaccines that prevent malaria, a mosquito-borne infectious disease which annually affects an estimated 247 million people worldwide and causes 619,000 deaths. The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix. As of April 2023, the vaccine has been given to 1.5 million children living in areas with moderate-to-high malaria transmission. It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years. The vaccine reduces hospital admissions from severe malaria by around 30%.

Human genetic resistance to malaria refers to inherited changes in the DNA of humans which increase resistance to malaria and result in increased survival of individuals with those genetic changes. The existence of these genotypes is likely due to evolutionary pressure exerted by parasites of the genus Plasmodium which cause malaria. Since malaria infects red blood cells, these genetic changes are most common alterations to molecules essential for red blood cell function, such as hemoglobin or other cellular proteins or enzymes of red blood cells. These alterations generally protect red blood cells from invasion by Plasmodium parasites or replication of parasites within the red blood cell.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

<span class="mw-page-title-main">Duffy binding proteins</span>

In molecular biology, Duffy binding proteins are found in Plasmodium. Plasmodium vivax and Plasmodium knowlesi merozoites invade Homo sapiens erythrocytes that express Duffy blood group surface determinants. The Duffy receptor family is localised in micronemes, an organelle found in all organisms of the phylum Apicomplexa.

Russell J. Howard is an Australian-born executive, entrepreneur and scientist. He was a pioneer in the fields of molecular parasitology, especially malaria, and in leading the commercialisation of one of the most important methods used widely today in molecular biology today called “DNA shuffling" or "Molecular breeding", a form of "Directed evolution".

KAHRP is a protein expressed by Plasmodium falciparum infecting erythrocytes. KAHRP is a major component of knobs, feature found on Plasmodium falciparum infected erythrocytes.

<span class="mw-page-title-main">Parasitophorous vacuole</span>

The parasitophorous vacuole (PV) is a structure produced by apicomplexan parasites in the cells of its host. The PV allows the parasite to develop while protected from the phagolysosomes of the host cell.

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins present on the membrane surface of red blood cells that are infected by the malarial parasite Plasmodium falciparum. PfEMP1 is synthesized during the parasite's blood stage inside the RBC, during which the clinical symptoms of falciparum malaria are manifested. Acting as both an antigen and adhesion protein, it is thought to play a key role in the high level of virulence associated with P. falciparum. It was discovered in 1984 when it was reported that infected RBCs had unusually large-sized cell membrane proteins, and these proteins had antibody-binding (antigenic) properties. An elusive protein, its chemical structure and molecular properties were revealed only after a decade, in 1995. It is now established that there is not one but a large family of PfEMP1 proteins, genetically regulated (encoded) by a group of about 60 genes called var. Each P. falciparum is able to switch on and off specific var genes to produce a functionally different protein, thereby evading the host's immune system. RBCs carrying PfEMP1 on their surface stick to endothelial cells, which facilitates further binding with uninfected RBCs, ultimately helping the parasite to both spread to other RBCs as well as bringing about the fatal symptoms of P. falciparum malaria.

<i>Plasmodium</i> helical interspersed subtelomeric protein

The Plasmodium helical interspersed subtelomeric proteins (PHIST) or ring-infected erythrocyte surface antigens (RESA) are a family of protein domains found in the malaria-causing Plasmodium species. It was initially identified as a short four-helical conserved region in the single-domain export proteins, but the identification of this part associated with a DnaJ domain in P. falciparum RESA has led to its reclassification as the RESA N-terminal domain. This domain has been classified into three subfamilies, PHISTa, PHISTb, and PHISTc.

Reticulocyte binding protein homologs (RHs) are a superfamily of proteins found in Plasmodium responsible for cell invasion. Together with the family of erythrocyte binding-like proteins (EBLs) they make up the two families of invasion proteins universal to Plasmodium. The two families function cooperatively.

References

  1. 1 2 3 4 5 6 7 8 9 Mundwiler-Pachlatko E, Beck HP (December 2013). "Maurer's clefts, the enigma of Plasmodium falciparum". Proceedings of the National Academy of Sciences of the USA. 110 (50): 19987–19994. Bibcode:2013PNAS..11019987M. doi: 10.1073/pnas.1309247110 . PMC   3864307 . PMID   24284172.
  2. 1 2 Wickert H, Krohne G (2007). "The complex morphology of Maurer's clefts: from discovery to three-dimensional reconstructions". Trends in Parasitology. 23 (10): 502–509. doi:10.1016/j.pt.2007.08.008. PMID   17888738.
  3. 1 2 DeNiz M, Burda PC, Kaiser G, Portillo HA, Spielmann T, Frischknecht F, Heussler VT (2017). "Progress in imaging methods: insights gained into Plasmodium biology". Nature Reviews Microbiology. 15 (1): 37–54. doi:10.1038/nrmicro.2016.158. PMID   27890922. S2CID   8692401.
  4. Sherling ES, van Ooij C (2016). "Host cell remodeling by pathogens: the exomembrane system in Plasmodium-infected erythrocytes". FEMS Microbiology Reviews. 40 (5): 701–721. doi:10.1093/femsre/fuw016. PMC   5007283 . PMID   27587718.