McCumber relation

Last updated

The McCumber relation (or McCumber theory) is a relationship between the effective cross-sections of absorption and emission of light in the physics of solid-state lasers. [1] [2] It is named after Dean McCumber, who proposed the relationship in 1964.

Contents

Definition

Let be the effective absorption cross-section be effective emission cross-sections at frequency , and let be the effective temperature of the medium. The McCumber relation is

(1)

where is thermal steady-state ratio of populations; frequency is called "zero-line" frequency; [3] [4] is the Planck constant and is the Boltzmann constant. Note that the right-hand side of Equation (1) does not depend on .

Gain

It is typical that the lasing properties of a medium are determined by the temperature and the population at the excited laser level, and are not sensitive to the method of excitation used to achieve it. In this case, the absorption cross-section and the emission cross-section at frequency can be related to the lasers gain in such a way, that the gain at this frequency can be determined as follows:

(2)

D.E.McCumber had postulated these properties and found that the emission and absorption cross-sections are not independent; [1] [2] they are related with Equation (1).

Idealized atoms

In the case of an idealized two-level atom the detailed balance for the emission and absorption which preserves the Planck formula for the black-body radiation leads to equality of cross-section of absorption and emission. In the solid-state lasers the splitting of each of laser levels leads to the broadening which greatly exceeds the natural spectral linewidth. In the case of an ideal two-level atom, the product of the linewidth and the lifetime is of order of unity, which obeys the Heisenberg uncertainty principle. In solid-state laser materials, the linewidth is several orders of magnitude larger so the spectra of emission and absorption are determined by distribution of excitation among sublevels rather than by the shape of the spectral line of each individual transition between sublevels. This distribution is determined by the effective temperature within each of laser levels. The McCumber hypothesis is that the distribution of excitation among sublevels is thermal. The effective temperature determines the spectra of emission and absorption ( The effective temperature is called a temperature by scientists even if the excited medium as whole is pretty far from the thermal state )

Deduction of the McCumber relation

Fig.1. Sketch of sublevels McCumberRelationActiveCemters.png
Fig.1. Sketch of sublevels

Consider the set of active centers (fig.1.). Assume fast transition between sublevels within each level, and slow transition between levels. According to the McCumber hypothesis, the cross-sections and do not depend on the populations and . Therefore, we can deduce the relation, assuming the thermal state.

Let be group velocity of light in the medium, the product is spectral rate of stimulated emission, and is that of absorption; is spectral rate of spontaneous emission. (Note that in this approximation, there is no such thing as a spontaneous absorption) The balance of photons gives:

(3)

Which can be rewritten as

(4)

The thermal distribution of density of photons follows from blackbody radiation [5]

(5)

Both (4) and (5) hold for all frequencies . For the case of idealized two-level active centers, , and , which leads to the relation between the spectral rate of spontaneous emission and the emission cross-section . [5] (We keep the term probability of emission for the quantity , which is probability of emission of a photon within small spectral interval during a short time interval , assuming that at time the atom is excited.) The relation (D2) is a fundamental property of spontaneous and stimulated emission, and perhaps the only way to prohibit a spontaneous break of the thermal equilibrium in the thermal state of excitations and photons.

For each site number , for each sublevel number , the partial spectral emission probability can be expressed from consideration of idealized two-level atoms: [5]

(6)

Neglecting the cooperative coherent effects, the emission is additive: for any concentration of sites and for any partial population of sublevels, the same proportionality between and holds for the effective cross-sections:

(7)

Then, the comparison of (D1) and (D2) gives the relation

(8)

This relation is equivalent of the McCumber relation (mc), if we define the zero-line frequency as solution of equation

(9)

the subscript indicates that the ratio of populations in evaluated in the thermal state. The zero-line frequency can be expressed as

(10)

Then (n1n2) becomes equivalent of the McCumber relation (mc).

No specific property of sublevels of active medium is required to keep the McCumber relation. It follows from the assumption about quick transfer of energy among excited laser levels and among lower laser levels. The McCumber relation (mc) has the same range of validity as the concept of the emission cross-section itself.

Confirmation of the McCumber relation

The McCumber relation is confirmed for various media. [6] [7] In particular, relation (1) makes it possible to approximate two functions of frequency, emission and absorption cross sections, with single fit . [8]

Violation of the McCumber relation and perpetual motion

Fig.2. Cross-sections for Yb:Gd2SiO5 versus
l
=
2
p
c
o
{\displaystyle \lambda ={\frac {2\pi c}{\omega }}} McCumberViolation.png
Fig.2. Cross-sections for Yb:Gd2SiO5 versus

In 2006 the strong violation of McCumber relation was observed for Yb:Gd2SiO5 and reported in 3 independent journals. [9] [10] [11] Typical behavior of the cross-sections reported is shown in Fig.2 with thick curves. The emission cross-section is practically zero at wavelength 975 nm; this property makes Yb:Gd2SiO5 an excellent material for efficient solid-state lasers.

However, the property reported (thick curves) is not compatible with the second law of thermodynamics. With such a material, the perpetual motion device would be possible. It would be sufficient to fill a box with reflecting walls with Yb:Gd2SiO5 and allow it to exchange radiation with a black body through a spectrally-selective window which is transparent in vicinity of 975 nm and reflective at other wavelengths. Due to the lack of emissivity at 975 nm the medium should warm, breaking the thermal equilibrium.

On the base of the second Law of thermodynamics, the experimental results [9] [10] [11] were refuted in 2007. With the McCumber theory, the correction was suggested for the effective emission cross section (black thin curve). [3] Then this correction was confirmed experimentally. [12]

Related Research Articles

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Active laser medium</span> Source of optical gain in a laser

The active laser medium is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a higher energy state previously populated by a pump source.

In physics, specifically in quantum mechanics, a coherent state is the specific quantum state of the quantum harmonic oscillator, often described as a state that has dynamics most closely resembling the oscillatory behavior of a classical harmonic oscillator. It was the first example of quantum dynamics when Erwin Schrödinger derived it in 1926, while searching for solutions of the Schrödinger equation that satisfy the correspondence principle. The quantum harmonic oscillator arise in the quantum theory of a wide range of physical systems. For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well. The coherent state describes a state in a system for which the ground-state wavepacket is displaced from the origin of the system. This state can be related to classical solutions by a particle oscillating with an amplitude equivalent to the displacement.

In mathematics, the family of Debye functions is defined by

The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance of the same physical variable, and vice versa. The fluctuation–dissipation theorem applies both to classical and quantum mechanical systems.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

<span class="mw-page-title-main">Einstein coefficients</span> Quantities describing probability of absorption or emission of light

In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

Quantum noise is noise arising from the indeterminate state of matter in accordance with fundamental principles of quantum mechanics, specifically the uncertainty principle and via zero-point energy fluctuations. Quantum noise is due to the apparently discrete nature of the small quantum constituents such as electrons, as well as the discrete nature of quantum effects, such as photocurrents.

<span class="mw-page-title-main">Jaynes–Cummings model</span> Model in quantum optics

The Jaynes–Cummings model is a theoretical model in quantum optics. It describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity.

The Kramers–Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925, based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927.

Self-pulsation is a transient phenomenon in continuous-wave lasers. Self-pulsation takes place at the beginning of laser action. As the pump is switched on, the gain in the active medium rises and exceeds the steady-state value. The number of photons in the cavity increases, depleting the gain below the steady-state value, and so on. The laser pulsates; the output power at the peaks can be orders of magnitude larger than that between pulses. After several strong peaks, the amplitude of pulsation reduces, and the system behaves as a linear oscillator with damping. Then the pulsation decays; this is the beginning of the continuous-wave operation.

In laser physics, gain or amplification is a process where the medium transfers part of its energy to the emitted electromagnetic radiation, resulting in an increase in optical power. This is the basic principle of all lasers. Quantitatively, gain is a measure of the ability of a laser medium to increase optical power. However, overall a laser consumes energy.

A vacuum Rabi oscillation is a damped oscillation of an initially excited atom coupled to an electromagnetic resonator or cavity in which the atom alternately emits photon(s) into a single-mode electromagnetic cavity and reabsorbs them. The atom interacts with a single-mode field confined to a limited volume V in an optical cavity. Spontaneous emission is a consequence of coupling between the atom and the vacuum fluctuations of the cavity field.

Surface-extended X-ray absorption fine structure (SEXAFS) is the surface-sensitive equivalent of the EXAFS technique. This technique involves the illumination of the sample by high-intensity X-ray beams from a synchrotron and monitoring their photoabsorption by detecting in the intensity of Auger electrons as a function of the incident photon energy. Surface sensitivity is achieved by the interpretation of data depending on the intensity of the Auger electrons instead of looking at the relative absorption of the X-rays as in the parent method, EXAFS.

The Mattis–Bardeen theory is a theory that describes the electrodynamic properties of superconductivity. It is commonly applied in the research field of optical spectroscopy on superconductors.

Free carrier absorption occurs when a material absorbs a photon, and a carrier is excited from an already-excited state to another, unoccupied state in the same band. This intraband absorption is different from interband absorption because the excited carrier is already in an excited band, such as an electron in the conduction band or a hole in the valence band, where it is free to move. In interband absorption, the carrier starts in a fixed, nonconducting band and is excited to a conducting one.

In ion trapping and atomic physics experiments, the Lamb Dicke regime is a quantum regime in which the coupling between an ion or atom's internal qubit states and its motional states is sufficiently small so that transitions that change the motional quantum number by more than one are strongly suppressed.

In statistics, the matrix t-distribution is the generalization of the multivariate t-distribution from vectors to matrices. The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution. For example, the matrix t-distribution is the compound distribution that results from sampling from a matrix normal distribution having sampled the covariance matrix of the matrix normal from an inverse Wishart distribution.

Heat transfer physics describes the kinetics of energy storage, transport, and energy transformation by principal energy carriers: phonons, electrons, fluid particles, and photons. Heat is thermal energy stored in temperature-dependent motion of particles including electrons, atomic nuclei, individual atoms, and molecules. Heat is transferred to and from matter by the principal energy carriers. The state of energy stored within matter, or transported by the carriers, is described by a combination of classical and quantum statistical mechanics. The energy is different made (converted) among various carriers. The heat transfer processes are governed by the rates at which various related physical phenomena occur, such as the rate of particle collisions in classical mechanics. These various states and kinetics determine the heat transfer, i.e., the net rate of energy storage or transport. Governing these process from the atomic level to macroscale are the laws of thermodynamics, including conservation of energy.

In quantum computing, Mølmer–Sørensen gate scheme refers to an implementation procedure for various multi-qubit quantum logic gates used mostly in trapped ion quantum computing. This procedure is based on the original proposition by Klaus Mølmer and Anders Sørensen in 1999-2000.

References

  1. 1 2 D.E.McCumber. Einstein relations connecting broadband emission and absorption spectra. PRB 136 (4A), 954957 (1964)
  2. 1 2 P.C.Becker, N.A.Olson, J.R.Simpson. Erbium-doped fiber amplifiers: fundamentals and theory (Academic, 1999).
  3. 1 2 D. Kouznetsov (2007). "Comment on Efficient diode-pumped Yb:Gd2SiO5 laser (Appl.Phys.Lett.88,221117(2006))". Applied Physics Letters . 90 (6): 066101. Bibcode:2007ApPhL..90f6101K. doi:10.1063/1.2435309.
  4. D.Kouznetsov (2007). "Broadband laser materials and the McCumber relation". Chinese Optics Letters . 5: S240–S242. Archived from the original on September 28, 2007.
  5. 1 2 3 e2
  6. R.S.Quimby (2002). "Range of validity of McCumber theory in relating absorption and emission cross sections". Journal of Applied Physics . 92 (1): 180–187. Bibcode:2002JAP....92..180Q. doi:10.1063/1.1485112.
  7. R.M.Martin; R.S.Quimby (2006). "Experimental evidence of the validity of the McCumber theory relating emission and absorption for rare-earth glasses". Journal of the Optical Society of America B . 23 (9): 1770–1775. Bibcode:2006JOSAB..23.1770M. doi:10.1364/JOSAB.23.001770.
  8. D.Kouznetsov; J.-F.Bisson; K.Takaichi; K.Ueda (2005). "Single-mode solid-state laser with short wide unstable cavity". Journal of the Optical Society of America B . 22 (8): 1605–1619. Bibcode:2005JOSAB..22.1605K. doi:10.1364/JOSAB.22.001605.
  9. 1 2 W. Li; H. Pan; L. Ding; H. Zeng; et al. (2006). "Efficient diode-pumped Yb:Gd2SiO5 laser". Applied Physics Letters . 88 (22): 221117. Bibcode:2006ApPhL..88v1117L. doi:10.1063/1.2206150.
  10. 1 2 W.Li; H.Pan; L.Ding; H.Zeng; et al. (2006). "Diode-pumped continuous-wave and passively mode-locked Yb:Gd2SiO5laser". Optics Express . 14 (2): 686–695. Bibcode:2006OExpr..14..686L. doi: 10.1364/OPEX.14.000686 . PMID   19503386.
  11. 1 2 C.Yan; G.Zhao; L.Zhang; J.Xu; et al. (2006). "A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd2SiO5". Solid State Communications . 137 (8): 451–455. Bibcode:2006SSCom.137..451Y. doi:10.1016/j.ssc.2005.12.023.[ dead link ]
  12. G.Zhao; L.Su; J.Xua; H.Zeng (2007). "Response to Comment on Efficient diode-pumped Yb:Gd2SiO5 laser (Appl. Phys. Lett. 90, 066101 2007)". Applied Physics Letters . 90 (6): 066103. Bibcode:2007ApPhL..90f6103Z. doi: 10.1063/1.2435314 .