This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
The mean sojourn time (or sometimes mean waiting time) for an object in a dynamical system is the amount of time an object is expected to spend in a system before leaving the system permanently. This concept is widely used in various fields, including physics, chemistry, and stochastic processes, to study the behavior of systems over time.
Imagine someone is standing in line to buy a ticket at the counter. After a minute, by observing the number of customers behind them, this person can estimate the rate at which customers are entering the system (in this case, the waiting line) per unit time (one minute). By dividing the number of customers ahead by this "flow" of customers, one can estimate how much longer the wait will be to reach the counter.
Formally, consider the waiting line as a system S into which there is a flow of particles (customers) and where the process of “buying a ticket” means that the particle leaves the system. This waiting time is commonly referred to as transit time. Applying Little's theorem once, the expected steady state number of particles in S equals the flow of particles into S times the mean transit time. Similar theorems have been discovered in other fields, and in physiology it was earlier known as one of the Stewart-Hamilton equations (which is used to estimate the blood volume of organs).
Consider a system S in the form of a closed domain of finite volume in the Euclidean space. Further, consider the situation where there is a stream of ”equivalent” particles into S (number of particles per time unit) where each particle retains its identity while being in S and eventually – after a finite time – leaves the system irreversibly (i.e., for these particles the system is "open").
The figure above depicts the thought motion history of a single such particle, which thus moves in and out of subsystem s three times, each of which results in a transit time, namely the time spent in the subsystem between entrance and exit. The sum of these transit times is the sojourn time of s for that particular particle. If the motions of the particles are looked upon as realizations of one and the same stochastic process, it is meaningful to speak of the mean value of this sojourn time. That is, the mean sojourn time of a subsystem is the total time a particle is expected to spend in the subsystem s before leaving S for good.
To see the practical significance of this quantity, it must be recognised that, as a law of physics, if the stream of particles into S is constant and all other relevant factors remain unchanged, S will eventually reach a steady state (i.e., the number and distribution of particles become constant throughout S). In this steady state, it can be demonstrated that the number of particles in the subsystems equals the stream of particles into S multiplied by the mean sojourn time of the subsystem. This represents a more general form of what was previously referred to as Little's theorem and is often described as the mass-time equivalence:
This has also been called the occupancy principle (where mean sojourn time is then referred to as occupancy). This mass-time equivalence has been applied in medicine for the study of metabolism of individual organs.
This is a generalization of what in queuing theory is sometimes referred to as Little's theorem that applies only to the whole system S (not to an arbitrary subsystem as in the mass-time equivalence); the mean sojourn time in the Little's theorem can be interpreted as mean transit time.
As likely evident from the discussion of the figure above, there is a fundamental difference between the meaning of the two quantities of sojourn time and transit time: the generality of the mass-time equivalence is very much due to the special meaning of the notion of sojourn time. When the whole system is considered (as in Little's law) is it true that sojourn time always equals transit time.
Examples of Applications:
1) Queuing Theory: In queuing systems, it corresponds to the average time a customer or job spends in the system or a specific queue.
2) Physics: Used to describe trapping times in potential wells or energy barriers in molecular dynamics.
3) Markov Chains: Describes the time a system spends in a transient state before transitioning.
In statistical mechanics and mathematics, a Boltzmann distribution is a probability distribution or probability measure that gives the probability that a system will be in a certain state as a function of that state's energy and the temperature of the system. The distribution is expressed in the form:
Brownian motion is the random motion of particles suspended in a medium.
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, neuroscience, computer science, information theory and sociology. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.
The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, it is a characteristic of the system's total energy and momentum that is the same in all frames of reference related by Lorentz transformations. If a center-of-momentum frame exists for the system, then the invariant mass of a system is equal to its total mass in that "rest frame". In other reference frames, where the system's momentum is nonzero, the total mass of the system is greater than the invariant mass, but the invariant mass remains unchanged.
In mathematical queueing theory, Little's law is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system. Expressed algebraically the law is
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.
In queueing theory, a discipline within the mathematical theory of probability, an M/M/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times have an exponential distribution. The model name is written in Kendall's notation. The model is the most elementary of queueing models and an attractive object of study as closed-form expressions can be obtained for many metrics of interest in this model. An extension of this model with more than one server is the M/M/c queue.
Lajos Takács was a Hungarian mathematician, known for his contributions to probability theory and in particular, queueing theory. He wrote over two hundred scientific papers and six books.
In queueing theory, a discipline within the mathematical theory of probability, Burke's theorem is a theorem asserting that, for the M/M/1 queue, M/M/c queue or M/M/∞ queue in the steady state with arrivals is a Poisson process with rate parameter λ:
In probability theory, a product-form solution is a particularly efficient form of solution for determining some metric of a system with distinct sub-components, where the metric for the collection of components can be written as a product of the metric across the different components. Using capital Pi notation a product-form solution has algebraic form
In queueing theory, a discipline within the mathematical theory of probability, the arrival theorem states that "upon arrival at a station, a job observes the system as if in steady state at an arbitrary instant for the system without that job."
In queueing theory, a discipline within the mathematical theory of probability, mean value analysis (MVA) is a recursive technique for computing expected queue lengths, waiting time at queueing nodes and throughput in equilibrium for a closed separable system of queues. The first approximate techniques were published independently by Schweitzer and Bard, followed later by an exact version by Lavenberg and Reiser published in 1980.
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian, service times have a General distribution and there is a single server. The model name is written in Kendall's notation, and is an extension of the M/M/1 queue, where service times must be exponentially distributed. The classic application of the M/G/1 queue is to model performance of a fixed head hard disk.
In queueing theory, a discipline within the mathematical theory of probability, an M/G/k queue is a queue model where arrivals are Markovian, service times have a General distribution and there are k servers. The model name is written in Kendall's notation, and is an extension of the M/M/c queue, where service times must be exponentially distributed and of the M/G/1 queue with a single server. Most performance metrics for this queueing system are not known and remain an open problem.
In queueing theory, a discipline within the mathematical theory of probability, the M/M/∞ queue is a multi-server queueing model where every arrival experiences immediate service and does not wait. In Kendall's notation it describes a system where arrivals are governed by a Poisson process, there are infinitely many servers, so jobs do not need to wait for a server. Each job has an exponentially distributed service time. It is a limit of the M/M/c queue model where the number of servers c becomes very large.
In queueing theory, a discipline within the mathematical theory of probability, a heavy traffic approximation involves the matching of a queueing model with a diffusion process under some limiting conditions on the model's parameters. The first such result was published by John Kingman, who showed that when the utilisation parameter of an M/M/1 queue is near 1, a scaled version of the queue length process can be accurately approximated by a reflected Brownian motion.
In queueing theory, a discipline within the mathematical theory of probability, an M/D/1 queue represents the queue length in a system having a single server, where arrivals are determined by a Poisson process and job service times are fixed (deterministic). The model name is written in Kendall's notation. Agner Krarup Erlang first published on this model in 1909, starting the subject of queueing theory. An extension of this model with more than one server is the M/D/c queue.
In queueing theory, a discipline within the mathematical theory of probability, Ross's conjecture gives a lower bound for the average waiting-time experienced by a customer when arrivals to the queue do not follow the simplest model for random arrivals. It was proposed by Sheldon M. Ross in 1978 and proved in 1981 by Tomasz Rolski. Equality can be obtained in the bound; and the bound does not hold for finite buffer queues.
In queueing theory, a discipline within the mathematical theory of probability, a D/M/1 queue represents the queue length in a system having a single server, where arrivals occur at fixed regular intervals and job service requirements are random with an exponential distribution. The model name is written in Kendall's notation. Agner Krarup Erlang first published a solution to the stationary distribution of a D/M/1 and D/M/k queue, the model with k servers, in 1917 and 1920.