Measles virus encoding the human thyroidal sodium iodide symporter

Last updated

Measles virus encoding the human thyroidal sodium iodide symporter or MV-NIS is an attenuated oncolytic Edmonston (Ed) strain of measles virus. [1] [2] [3]

Contents

MV-NIS will attach and fuse to host tumor cell membranes. After fusion, MV-NIS has been observed to kill the tumor cells. Due to the unique properties of iodine uptake in these cells, iodine 123 (I-123) may be used to image MV-NIS-infected tumor cells. Non-invasive imaging provides confirmation of targeted infection and allows for monitoring and visualization of treatment progression.

The human CD46 antigen is known to be the functional cellular receptor for Measles virus. [4] This type 1 integral membrane glycoprotein is a normal part of human tissue but may be overexpressed on some cancer cell types. [2]

MV-NIS is the first targeted engineered virus therapy to have shown remission in published cancer clinical trials. [2] [5]

PET/CT Imaging

A few days after infection, the host animal may be injected with radioiodine which is then selectively captured by infected cells and tumors. Detailed images may then be created showing the location of these infections and the target sites for tumor reduction monitoring. [6]

In the mouse model, non-invasive imaging and selective uptake have assisted in evidence for selective prostate cancer treatment. [7]

This imaging technique is an improvement over initial efforts to engineer a Measles virus to carry the soluble marker human carcinoembryonic antigen (CEA). The resultant strain, MV-CEA, could only be monitored by blood test which is not specific to areas of treatment. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Cotransporter</span> Type of membrane transport proteins

Cotransporters are a subcategory of membrane transport proteins (transporters) that couple the favorable movement of one molecule with its concentration gradient and unfavorable movement of another molecule against its concentration gradient. They enable coupled or cotransport and include antiporters and symporters. In general, cotransporters consist of two out of the three classes of integral membrane proteins known as transporters that move molecules and ions across biomembranes. Uniporters are also transporters but move only one type of molecule down its concentration gradient and are not classified as cotransporters.

This is a list of terms related to oncology. The original source for this list was the US National Cancer Institute's public domain Dictionary of Cancer Terms.

An oncolytic virus is a virus that preferentially infects and kills cancer cells. As the infected cancer cells are destroyed by oncolysis, they release new infectious virus particles or virions to help destroy the remaining tumour. Oncolytic viruses are thought not only to cause direct destruction of the tumour cells, but also to stimulate host anti-tumour immune system responses. Oncolytic viruses also have the ability to affect the tumor micro-environment in multiple ways.

Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches use three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression. Gene knockout uses RNA methods to silence or reduce expression of disease-causing genes. Suicide gene delivery introduces genetic sequences that induce an apoptotic response in cells, usually to kill cancerous growths. In a slightly different context, virotherapy can also refer more broadly to the use of viruses to treat certain medical conditions by killing pathogens.

<span class="mw-page-title-main">Wolff–Chaikoff effect</span> Effect of iodine on the thyroid

The Wolff–Chaikoff effect is a presumed reduction in thyroid hormone levels caused by ingestion of a large amount of iodine.

<span class="mw-page-title-main">Gastric mucosa</span> Mucous membrane layer of the stomach

The gastric mucosa is the mucous membrane layer of the stomach, which contains the glands and the gastric pits. In humans, it is about 1 mm thick, and its surface is smooth, soft, and velvety. It consists of simple columnar epithelium, lamina propria, and the muscularis mucosae.

An antithyroid agent is a hormone inhibitor acting upon thyroid hormones.

<span class="mw-page-title-main">CD46</span> Mammalian protein found in Homo sapiens

CD46 complement regulatory protein also known as CD46 and Membrane Cofactor Protein is a protein which in humans is encoded by the CD46 gene. CD46 is an inhibitory complement receptor.

<span class="mw-page-title-main">Sodium/iodide cotransporter</span> Mammalian protein found in Homo sapiens

The sodium/iodide cotransporter, also known as the sodium/iodide symporter (NIS), is a protein that in humans is encoded by the SLC5A5 gene. It is a transmembrane glycoprotein with a molecular weight of 87 kDa and 13 transmembrane domains, which transports two sodium cations (Na+) for each iodide anion (I) into the cell. NIS mediated uptake of iodide into follicular cells of the thyroid gland is the first step in the synthesis of thyroid hormone.

<span class="mw-page-title-main">PTTG1IP</span> Protein-coding gene in the species Homo sapiens

Pituitary tumor-transforming gene 1 protein-interacting protein (PTTG1), also known as PTTG1-binding factor (PBF), is a poorly characterised protein that in humans is encoded by the PTTG1IP gene located within the chromosomal region 21q22.3.

<i>Senecavirus</i> Genus of viruses

Senecavirus is a genus of viruses in the order Picornavirales, in the family Picornaviridae. Pig and maybe also cow serve as natural hosts. There is only one species in this genus: Senecavirus A. Senecavirus is a replication-competent oncolytic picornavirus. It has selective tropism for cancers with neuroendocrine features including small cell lung cancer (SCLC) and several pediatric solid tumors including retinoblastoma, neuroblastoma, and medulloblastoma. A Phase I clinical trial of Senecavirus in adults with neuroendocrine tumors showed that senecavirus is apparently safe to administer at doses up to 1E11 vp/kg. It has potential antineoplastic activity.

Oncolytics Biotech Inc. is a Canadian company headquartered in Calgary, Alberta, that is developing an intravenously delivered immuno-oncolytic virus called pelareorep for the treatment of solid tumors and hematological malignancies. Pelareorep is a non-pathogenic, proprietary isolate of the unmodified reovirus that: induces selective tumor lysis and promotes an inflamed tumor phenotype through innate and adaptive immune responses.

Pelareorep is a proprietary isolate of the unmodified human reovirus being developed as a systemically administered immuno-oncological viral agent for the treatment of solid tumors and hematological malignancies. Pelareorep is an oncolytic virus, which means that it preferentially lyses cancer cells. Pelareorep also promotes an inflamed tumor phenotype through innate and adaptive immune responses. Preliminary clinical trials indicate that it may have anti-cancer effects across a variety of cancer types when administered alone and in combination with other cancer therapies.

Hussein Naim is a Lebanese-Swiss biochemist and molecular virologist, known for his research in cell biology and virology. He has held several leading positions at prominent universities and biotechnology centers.

<span class="mw-page-title-main">Talimogene laherparepvec</span> Gene therapy medication

Talimogene laherparepvec, sold under the brand name Imlygic, is a biopharmaceutical medication used to treat melanoma that cannot be operated on; it is injected directly into a subset of lesions which generates a systemic immune response against the recipient's cancer. The final four year analysis from the pivotal phase 3 study upon which TVEC was approved by the FDA showed a 31.5% response rate with a 16.9% complete response (CR) rate. There was also a substantial and statistically significant survival benefit in patients with earlier metastatic disease and in patients who hadn't received prior systemic treatment for melanoma. The earlier stage group had a reduction in the risk of death of approximately 50% with one in four patients appearing to have met, or be close to be reaching, the medical definition of cure. Real world use of talimogene laherparepvec have shown response rates of up to 88.5% with CR rates of up to 61.5%.

<span class="mw-page-title-main">Oncolytic herpes virus</span>

Many variants of herpes simplex virus have been considered for viral therapy of cancer; the early development of these was thoroughly reviewed in the journal Cancer Gene Therapy in 2002. This page describes the most notable variants—those tested in clinical trials: G207, HSV1716, NV1020 and Talimogene laherparepvec. These attenuated versions are constructed by deleting viral genes required for infecting or replicating inside normal cells but not cancer cells, such as ICP34.5, ICP6/UL39, and ICP47.

Adenovirus varieties have been explored extensively as a viral vector for gene therapy and also as an oncolytic virus.

Viralytics Ltd is an Australian biotechnology company working in the field of oncolytic viruses, that is, viruses that preferentially infect and kill cancer cells. The company's oncolytic virus product, called Cavatak, is currently in clinical trials in metastatic melanoma and other cancers. The drug was granted Orphan Drug status in advanced melanoma in December 2005.

Christian Bréchot is a French physician and scientist who has been serving as president of the Global Virus Network (GVN) since 2017. He previously served as president of the Institut Pasteur from 2013 until 2017 and as chief executive officer of the French National Institute for Health and Medical Research (INSERM) from 2001 to 2007.

Nancy Carrasco is a professor in, and the chair of, the Department of Molecular Physiology and Biophysics at Vanderbilt University. Carrasco has conducted research in the fields of biochemistry, biophysics, molecular physiology, molecular endocrinology, and cancer. She cloned the sodium/iodide symporter (NIS), a breakthrough in thyroid pathophysiology with ramifications for many other fields, including structure/function of transport proteins, molecular endocrinology, gene transfer studies, cancer, and public health.

References

  1. "Drug Dictionary". Compass Oncology. Retrieved 21 August 2014.
  2. 1 2 3 Russell, Stephen J.; Mark J. Federspiel; Kah-Whye Peng; Caili Tong; David Dingli; William G. Morice; Val Lowe; Michael K. O'Connor; Robert A. Kyle; Nelson Leung; Francis K. Buadi; S. Vincent Rajkumar; Morie A. Gertz; Martha Q. Lacy; Angela Dispenzieri (2014-07-01). "Remission of Disseminated Cancer After Systemic Oncolytic Virotherapy". Mayo Clinic Proceedings. 89 (7): 926–933. doi:10.1016/j.mayocp.2014.04.003. ISSN   0025-6196. PMC   4225126 . PMID   24835528.
  3. Dingli, David; Kah-Whye Peng; Mary E. Harvey; Philip R. Greipp; Michael K. O'Connor; Roberto Cattaneo; John C. Morris; Stephen J. Russell (2004-03-01). "Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter". Blood. 103 (5): 1641–1646. doi:10.1182/blood-2003-07-2233. ISSN   0006-4971. PMID   14604966. S2CID   15264187.
  4. Dörig, R. E.; A. Marcil; A. Chopra; C. D. Richardson (1993-10-22). "The human CD46 molecule is a receptor for measles virus (Edmonston strain)". Cell. 75 (2): 295–305. doi:10.1016/0092-8674(93)80071-l. ISSN   0092-8674. PMID   8402913. S2CID   11793440.
  5. Bonander, Ross. "Engineered Measles Virus Puts Myeloma Patient Into Remission". Lymphoma Info. Retrieved 22 August 2014.
  6. Russell, Stephen J. "Oncolytic Virotherapy for Multiple Myeloma Oncolytic Virotherapy for Multiple Myeloma" (PDF). International Myeloma Foundation. Mayo Clinic. Archived from the original (PDF) on 26 August 2014. Retrieved 21 August 2014.
  7. Msaouel, Pavlos; Ianko D. Iankov; Cory Allen; Ileana Aderca; Mark J. Federspiel; Donald J. Tindall; John C. Morris; Michael Koutsilieris; Stephen J. Russell; Evanthia Galanis (2009). "Noninvasive Imaging and Radiovirotherapy of Prostate Cancer Using an Oncolytic Measles Virus Expressing the Sodium Iodide Symporter". Molecular Therapy. 17 (12): 2041–2048. doi:10.1038/mt.2009.218. ISSN   1525-0016. PMC   2810133 . PMID   19773744.
  8. "Update on the measles virus, a novel therapy for glioblastoma". Mayo Clinic. Retrieved 22 August 2014.