Measurable group

Last updated

In mathematics, a measurable group is a special type of group in the intersection between group theory and measure theory. Measurable groups are used to study measures is an abstract setting and are often closely related to topological groups.

Contents

Definition

Let a group with group law

.

Let further be a σ-algebra of subsets of the set .

The group, or more formally the triple is called a measurable group if [1]

Here, denotes the formation of the product σ-algebra of the σ-algebras and .

Topological groups as measurable groups

Every second-countable topological group can be taken as a measurable group. This is done by equipping the group with the Borel σ-algebra

,

which is the σ-algebra generated by the topology. Since by definition of a topological group, the group law and the formation of the inverse element is continuous, both operations are in this case also measurable from to and from to , respectively. Second countability ensures that , and therefore the group is also a measurable group.

Measurable groups can be seen as measurable acting groups that act on themselves.

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).

Measure (mathematics) Generalization of length, area, volume and integral

In mathematical analysis, a measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size. In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space Rn. For instance, the Lebesgue measure of the interval [0, 1] in the real numbers is its length in the everyday sense of the word, specifically, 1.

In mathematical analysis and in probability theory, a σ-algebra on a set X is a collection Σ of subsets of X that includes X itself, is closed under complement, and is closed under countable unions.

In mathematics, a Borel set is any set in a topological space that can be formed from open sets through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel.

In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured.

In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

Mixing (mathematics) mathematical description of thermodynamic mixing

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: mixing paint, mixing drinks, etc.

In mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology of two topological spaces, except that there can be many natural choices for the product measure.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to R-algebras where R need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where R is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In mathematics, an operad is concerned with prototypical algebras that model properties such as commutativity or anticommutativity as well as various amounts of associativity. Operads generalize the various associativity properties already observed in algebras and coalgebras such as Lie algebras or Poisson algebras by modeling computational trees within the algebra. Algebras are to operads as group representations are to groups. An operad can be seen as a set of operations, each one having a fixed finite number of inputs (arguments) and one output, which can be composed one with others. They form a category-theoretic analog of universal algebra.

In mathematics, a positive measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number, and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is the countable union of measurable sets with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.

In measure theory and probability, the monotone class theorem connects monotone classes and sigma-algebras. The theorem says that the smallest monotone class containing an algebra of sets G is precisely the smallest σ-algebra containing G. It is used as a type of transfinite induction to prove many other theorems, such as Fubini's theorem.

In probability theory, random element is a generalization of the concept of random variable to more complicated spaces than the simple real line. The concept was introduced by Maurice Fréchet (1948) who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors, functions, processes, fields, series, transformations, and also sets or collections of sets.”

In probability theory, a random measure is a measure-valued random element. Random measures are for example used in the theory of random processes, where they form many important point processes such as Poisson point processes and Cox processes.

In probability theory, a Markov kernel is a map that in the general theory of Markov processes, plays the role that the transition matrix does in the theory of Markov processes with a finite state space.

Real-valued function Mathematical function that takes real values

In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain.

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

In the mathematics of probability, a transition kernel or kernel is a function in mathematics that has different applications. Kernels can for example be used to define random measures or stochastic processes. The most important example of kernels are the Markov kernels.

In mathematics, a measurable acting group is a special group that acts on some space in a way that is compatible with structures of measure theory. Measurable acting groups are found in the intersection of measure theory and group theory, two sub-disciplines of mathematics. Measurable acting groups are the basis for the study of invariant measures in abstract settings, most famously the Haar measure, and the study of stationary random measures.

References

  1. Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. p. 266. doi:10.1007/978-3-319-41598-7. ISBN   978-3-319-41596-3.