Measurement category

Last updated
Schematic representation of measurement categories Measurement categories.svg
Schematic representation of measurement categories

Measurement category is a method of classification by the International Electrotechnical Commission (IEC) [1] of live electric circuits used in measurement and testing of installations and equipment, usually in the relation within a building (residential or industrial).

Contents

The categories take into account the total continuous energy available at the given point of circuit, and the occurrence of impulse voltages. The energy can be limited by circuit breakers or fuses, and the impulse voltages by the nominal level of voltage.

Measurement categories

Measuring circuits are subjected to working voltages and transient stresses from the circuit to which they are connected during measurement or test. When the measuring circuit is used to measure mains, the transient stresses can be estimated by the location within the installation at which the measurement is performed. When the measuring circuit is used to measure any other electrical signal, the transient stresses must be considered by the user to assure that they do not exceed the capabilities of the measuring equipment. In this standard, circuits are divided into the following measurement categories: [2]

CAT I

Category I is for measurements performed on circuits not directly connected to mains.

Examples are measurements on circuits not derived from mains, and specially protected (internal) mains-derived circuits. In the latter case, transient stresses are variable; for that reason IEC 61010-1-5.4.1(g) requires that the transient withstand capability of the equipment is made known to the user. [2]

CAT II

Measurement category II is for measurements performed on circuits directly connected to the low-voltage installation.

Examples are measurements on household appliances, portable tools and similar equipment. [2]

CAT III

Measurement category III is for measurements performed in the building installation.

Examples are measurements on distribution boards, circuit-breakers, wiring, including cables, bus-bars, junction boxes, switches, socket-outlets in the fixed installation, and equipment for industries. [2]

CAT IV

Measurement category IV is for measurements performed at the source of the low-voltage installation.

Examples are electricity meters and measurements on primary overcurrent protection devices and ripple control units. [2]

Clearances

The value of clearance relates to the electrical insulation, and the possibility of arc flash between two electrically energised parts (or between live and grounded parts). Higher voltages require higher clearances. For double insulation the clearances must be doubled.

The required values can vary from 0.04 mm for single insulation CAT II, 50 V, to 28 mm for double insulation CAT IV, 1000 V. The exact values are defined in the international standards. Such standards should be followed rigorously during the design process of the appropriate equipment.

Impulse withstand voltages

Similarly to the clearances the value of required impulse withstand voltage varies from 500 V (CAT II, 50 V), to 12,000 V (CAT IV, 1000 V):

Working VoltageTransient Overvoltage
CAT IVCAT IIICAT IICAT I
150 V4,000 V2,500 V1,500 V800 V
300 V6,000 V4,000 V2,500 V1,500 V
600 V8,000 V6,000 V4,000 V2,500 V
1000 V12,000 V8,000 V6,000 V4,000 V
Source Impedance2 Ohms2 Ohms12 Ohms30 Ohms

Related Research Articles

Multimeter

A multimeter or a multitester, also known as a VOM (volt-ohm-milliammeter), is an electronic measuring instrument that combines several measurement functions in one unit. A typical multimeter can measure voltage, current, and resistance. Analog multimeters use a microammeter with a moving pointer to display readings. Digital multimeters have a numeric display, and may also show a graphical bar representing the measured value. Digital multimeters have rendered analog multimeters obsolescent, because they are now lower cost, higher precision, and more physically robust.

Mains electricity Type of lower-voltage electricity most commonly provided by utilities

Mains electricity, also known by the American English terms utility power, power grid, domestic power, and wall power, or in some parts of Canada as hydro, is a general-purpose alternating-current (AC) electric power supply. It is the form of electrical power that is delivered to homes and businesses through electrical infrastructure in many parts of the world. People use this electricity to power everyday items—such as domestic appliances, televisions and lamps—by plugging them into a wall outlet.

Electrical substation

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

In the electrical appliance manufacturing industry, the following IEC protection classes are defined in IEC 61140 and used to differentiate between the protective-earth connection requirements of devices.

As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures. Current carried on a grounding conductor can result in objectionable or dangerous voltages appearing on equipment enclosures, so the installation of grounding conductors and neutral conductors is carefully defined in electrical regulations. Where a neutral conductor is used also to connect equipment enclosures to earth, care must be taken that the neutral conductor never rises to a high voltage with respect to local ground.

Electrical wiring in the United Kingdom is commonly understood to be an electrical installation for operation by end users within domestic, commercial, industrial, and other buildings, and also in special installations and locations, such as marinas or caravan parks. It does not normally cover the transmission or distribution of electricity to them.

Breakdown voltage

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to become electrically conductive.

An earthing system (UK) or grounding system (US) connects specific parts of an electric power system with the ground, typically the Earth's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary considerably among countries, though most follow the recommendations of the International Electrotechnical Commission. Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

Extra-low voltage

Extra-low voltage (ELV) is an electricity supply voltage in a range which carries a low risk of dangerous electrical shock. There are various standards that define extra-low voltage. The International Electrotechnical Commission member organizations and the UK IET define an ELV device or circuit as one in which the electrical potential between conductor or electrical conductor and earth (ground) does not exceed 50 V a.c. or 120 V d.c..

In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which current bypasses the normal load. An open-circuit fault occurs if a circuit is interrupted by some failure. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

An insulation monitoring device monitors the ungrounded system between an active phase conductor and earth. It is intended to give an alert or disconnect the power supply when the resistance between the two conductors drops below a set value, usually 50 kΩ. The main advantage is that the ungrounded or floating system allows a continuous operation of important consumers such as medical, chemical, military, etc.

Portable appliance testing

Portable appliance testing is the name of a process in the United Kingdom, the Republic of Ireland, New Zealand and Australia by which electrical appliances are routinely checked for safety. The formal term for the process is "in-service inspection & testing of electrical equipment". Testing involves a visual inspection of the equipment and any flexible cables for good condition, and also where required, verification of earthing (grounding) continuity, and a test of the soundness of insulation between the current carrying parts, and any exposed metal that may be touched. The formal limits for pass/fail of these electrical tests vary somewhat depending on the category of equipment being tested.

The Comparative Tracking Index (CTI) is used to measure the electrical breakdown (tracking) properties of an insulating material. Tracking is an electrical breakdown on the surface of an insulating material wherein an initial exposure to heat chars the material, and the char is more conductive than the original insulator, producing more current flow, more heat, and eventually complete failure.

Electrical safety testing is essential to ensure safe operating standards for any product that uses electricity. Various governments and agencies have developed stringent requirements for electrical products that are sold world-wide. In most markets it is mandatory for a product to conform to safety standards promulgated by safety and standard agencies such as UL, VDE, CSA, BSI and so on. To conform to such standards, the product must pass safety tests such as the high voltage test, Insulation Resistance Test, Ground (Earth) Bond and Ground Continuity Test and Leakage Current Test. These tests are described in IEC 60335, IEC 61010 and many other national and international standards.

Megohmmeter

A Megohmmeter or insulation resistance tester is a special type of ohmmeter used to measure the electrical resistance of insulators. Insulating components, for example cable jackets, must be tested for their insulation strength at the time of commissioning and as part of maintenance of high voltage electrical equipment and installations.

VLF cable testing is a technique for testing of medium and high voltage cables. VLF systems are advantageous in that they can be manufactured to be small and lightweight; making them useful – especially for field testing where transport and space can be issues. Because the inherent capacitance of a power cable needs to be charged when energised, system frequency voltage sources are much larger, heavier and more expensive than their lower-frequency alternatives. Traditionally DC hipot testing was used for field testing of cables, but DC testing has been shown to be ineffective for withstand testing of modern cables with polymer based insulation. DC testing has also been shown to reduce the remaining life of cables with aged polymer insulation.

Film capacitor

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called "film caps" as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

Vacuum interrupter

In electrical engineering, a vacuum interrupter is a switch which uses electrical contacts in a vacuum. It is the core component of medium-voltage circuit-breakers, generator circuit-breakers, and high-voltage circuit-breakers. Separation of the electrical contacts results in a metal vapour arc, which is quickly extinguished. Vacuum interrupters are widely used in utility power transmission systems, power generation unit, and power-distribution systems for railways, arc furnace applications, and industrial plants.

References

  1. http://assets.fluke.com/Appnotes/2042049_w.pdf
  2. 1 2 3 4 5 "Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use--Part1: General Requirements". ANSI/ISA. 61010-1 (82.02.01): 67. 2004.