Medical device connectivity

Last updated

Medical device connectivity is the establishment and maintenance of a connection through which data is transferred between a medical device, such as a patient monitor, and an information system. The term is used interchangeably with biomedical device connectivity or biomedical device integration. By eliminating the need for manual data entry, potential benefits include faster and more frequent data updates, diminished human error, and improved workflow efficiency. [1]

Contents

Medical devices may be connected on wireless and wired networks. Wireless networks, including Wi-Fi, Wireless Medical Telemetry Service, and Bluetooth, provide more ubiquitous coverage of connectivity, allowing uninterrupted monitoring of patients in transit. Wired networks are fast, stable, and highly available. Wired networks are usually more costly to install at first and require ongoing costs for maintenance, but allow connectivity of the organization in a closed environment. [2] [ self-published source? ]

Interoperability of devices

Adherence to standards ensures interoperability within a network of medical devices. In most cases, the clinical environment is heterogenous; devices are supplied by a variety of vendors, allowing for different technologies to be utilized. Achieving interoperability can be difficult, as data format and encryption varies among vendors and models. [3] The following standards enable interoperability between connected medical device.

Regulatory organizations and industrial associations, such as Integrating the Healthcare Enterprise (IHE) initiative and Continua Health Alliance, are working towards standardized vendor-neutral device integration systems. [4] The IHE provides a single set of internationally harmonized medical device informatics and interoperability standards as a unitary reference point for the industry. The IHE collaborates with Continua Health Alliance regarding data exchange protocol and device specializations. [5]

The IHE Patient Care Device (PCD) Technical Framework Volumes 1-3 defines the established standards profiles, such as the integration, transaction and semantic content profiles respectively for complete, enterprise-wide integration and interoperability of health information systems. [6] [7] [8] Several profiles have applications in medical device connectivity including the following:

Medical Device Integration Software

Hospitals have many different makes and models of medical devices. Each department has different types of devices, and rarely does an entire hospital run the same brand device. Because of the large number of devices, and the varying formats that data is exchanged (RS-232, HL7, Bluetooth, WiFi), Medical Device Integration software has become a critical component to integrating this vital patient data.

Positive Patient Identification and Connectivity

Patient confidentiality can be compromised when the device data is transmitted to the wrong electronic health record. A positive patient identification at the point of care can be ensured through bar-code identifiers and radiofrequency identifiers.

Security Issues in Medical Device Connectivity

Security issues may arise in medical networking for many reasons. The following is a list of security challenges particular to medical devices:

Relevant organizations

Related Research Articles

Digital Imaging and Communications in Medicine (DICOM) is the standard for the communication and management of medical imaging information and related data. DICOM is most commonly used for storing and transmitting medical images enabling the integration of medical imaging devices such as scanners, servers, workstations, printers, network hardware, and picture archiving and communication systems (PACS) from multiple manufacturers. It has been widely adopted by hospitals and is making inroads into smaller applications such as dentists' and doctors' offices.

<span class="mw-page-title-main">Health informatics</span> Applications of information processing concepts and machinery in medicine

Health informatics is the field of science and engineering that aims at developing methods and technologies for the acquisition, processing, and study of patient data, which can come from different sources and modalities, such as electronic health records, diagnostic test results, medical scans. The health domain provides an extremely wide variety of problems that can be tackled using computational techniques.

Health Level Seven or HL7 refers to a set of international standards for transfer of clinical and administrative data between software applications used by various healthcare providers. These standards focus on the application layer, which is "layer 7" in the OSI model. The HL7 standards are produced by Health Level Seven International, an international standards organization, and are adopted by other standards issuing bodies such as American National Standards Institute and International Organization for Standardization.

A Regional Health Information Organization, also called a Health Information Exchange Organization, is a multistakeholder organization created to facilitate a health information exchange (HIE) – the transfer of healthcare information electronically across organizations – among stakeholders of that region's healthcare system. The ultimate objective is to improve the safety, quality, and efficiency of healthcare as well as access to healthcare through the efficient application of health information technology. RHIOs are also intended to support secondary use of clinical data for research as well as institution/provider quality assessment and improvement. RHIO stakeholders include smaller clinics, hospitals, medical societies, major employers and payers.

The HL7 Clinical Document Architecture (CDA) is an XML-based markup standard intended to specify the encoding, structure and semantics of clinical documents for exchange. In November 2000, HL7 published Release 1.0. The organization published Release 2.0 with its "2005 Normative Edition."

<span class="mw-page-title-main">Continua Health Alliance</span>

Continua Health Alliance is an international non-profit, open industry group of nearly 240 healthcare providers, communications, medical, and fitness device companies. Continua was a founding member of Personal Connected Health Alliance which was launches in February 2014 with other founding members mHealth SUMMIT and HIMSS.

The ISO/TC 215 is the International Organization for Standardization's (ISO) Technical Committee (TC) on health informatics. TC 215 works on the standardization of Health Information and Communications Technology (ICT), to allow for compatibility and interoperability between independent systems.

CEN ISO/IEEE 11073 Health informatics - Medical / health device communication standards enable communication between medical, health care and wellness devices and external computer systems. They provide automatic and detailed electronic data capture of client-related and vital signs information, and of device operational data.

Medical equipment management is a term for the professionals who manage operations, analyze and improve utilization and safety, and support servicing healthcare technology. These healthcare technology managers are, much like other healthcare professionals referred to by various specialty or organizational hierarchy names.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

InterSystems Corporation is a privately held vendor of software systems and technology for high-performance database management, rapid application development, integration, and healthcare information systems. The vendor's products include InterSystems IRIS Data Platform, Caché Database Management System, the InterSystems Ensemble integration platform, the HealthShare healthcare informatics platform and TrakCare healthcare information system, which is sold outside the United States.

The Health Industry Business Communications Council (HIBCC) is a primary standard-setting and educational organization for healthcare bar coding in the United States. It provides publications, trade shows, educational resources, conferences and training programs.

Barcode technology in healthcare is the use of optical machine-readable representation of data in a hospital or healthcare setting.

ISO/IEEE 11073 Personal Health Device (PHD) standards are a group of standards addressing the interoperability of personal health devices (PHDs) such as weighing scales, blood pressure monitors, blood glucose monitors and the like. The standards draw upon earlier IEEE11073 standards work, but differ from this earlier work due to an emphasis on devices for personal use and a simpler communications model.

Radiation Exposure Monitoring (REM) is a framework developed by Integrating the Healthcare Enterprise (IHE), for utilizing existing technical standards, such as DICOM, to provide information about the dose delivered to patients in radiology procedures, in an interoperable format.

<span class="mw-page-title-main">Medical image sharing</span> Electronic exchange of medical images

Medical image sharing is the electronic exchange of medical images between hospitals, physicians and patients. Rather than using traditional media, such as a CD or DVD, and either shipping it out or having patients carry it with them, technology now allows for the sharing of these images using the cloud. The primary format for images is DICOM. Typically, non-image data such as reports may be attached in standard formats like PDF during the sending process. Additionally, there are standards in the industry, such as IHE Cross Enterprise Document Sharing for Imaging (XDS-I), for managing the sharing of documents between healthcare enterprises. A typical architecture involved in setup is a locally installed server, which sits behind the firewall, allowing secure transmissions with outside facilities. In 2009, the Radiological Society of North America launched the "Image Share" project, with the goal of giving patients control of their imaging histories by allowing them to manage these records as they would online banking or shopping.

<span class="mw-page-title-main">Integrating the Healthcare Enterprise</span> Non-profit organization

Integrating the Healthcare Enterprise (IHE) is a non-profit organization based in the US state of Illinois. It sponsors an initiative by the healthcare industry to improve the way computer systems share information. IHE was established in 1998 by a consortium of radiologists and information technology (IT) experts.

Health Level Seven International (HL7) is a non-profit ANSI-accredited standards development organization that develops standards that provide for global health data interoperability.

<span class="mw-page-title-main">Dipak Kalra</span>

Dipak Kalra is President of the European Institute for Health Records and of the European Institute for Innovation through Health Data. He undertakes international research and standards development, and advises on adoption strategies, relating to Electronic Health Records.

<span class="mw-page-title-main">IEEE 11073 service-oriented device connectivity</span> Communication protocol for point-of-care (PoC) medical devices

The IEEE 11073 service-oriented device connectivity (SDC) family of standards defines a communication protocol for point-of-care (PoC) medical devices. The main purpose is to enable manufacturer-independent medical device-to-device interoperability. Furthermore, interconnection between medical devices and medical information systems is enabled. However, IEEE 11073 SDC does not compete with established and emerging standards like HL7 v2 or HL7 FHIR. IEEE 11073 SDC is part of the established ISO/IEEE 11073 family of standards.

References

  1. Witonsky, P (2012). "Leveraging EHR investments through medical device connectivity". Healthcare Financial Management. 66 (8): 50–3. PMID   22931026.
  2. Brookstone, Alan (August 17, 2011). "Pros and Cons of Wireless and Local Networks".
  3. Day, B., (2011). Standards for medical device interoperability and integration. Patient Safety & Quality Healthcare, Jan/Feb. Retrieved from "Standards for Medical Device Interoperability and Integration". Archived from the original on 2013-01-31. Retrieved 2012-12-10.
  4. 1 2 Rhoads, John G.; Cooper, Todd; Fuchs, Ken; Schluter, Paul; Zambuto, Raymond Peter (2010). "Medical device interoperability and the Integrating the Healthcare Enterprise (IHE) initiative". Biomedical Instrumentation & Technology. Suppl: 21–7. PMID   20225710.
  5. 1 2 Cooper, Todd; Rhoads, John (October 7, 2010). "Medical Medical Device Interoperability Interoperability Inquiry" (PDF). Integrating the Healthcare Enterprise.
  6. 1 2 3 4 IHE International. (2012). IHE Patient Care Device . Retrieved November 16, 2012, from "IHE.net IHE Patient Care Device Domain". Archived from the original on 2012-02-04. Retrieved 2012-12-12.
  7. IHE International Inc. (2012). IHE Patient Care Device Technical Framework, Volume 1 (IHE PCD TF-1): Integration Profiles (Vol. 10, pp. 1– 42). Retrieved from http://www.ihe.net/Technical_Framework/upload/IHE_PCD_TF_Vol1.pdf
  8. 1 2 IHE International Inc. (2012). IHE.net Technical Frameworks. August 16. Retrieved November 14, 2012, from http://www.ihe.net/Technical_Framework/index.cfm#pcd
  9. 1 2 McAlpine, B (2011). "Improving medical device connectivity. Both bar coding and RFID technologies can be applied to improve workflow". Health Management Technology. 32 (5): 18–9. PMID   21650134.
  10. 1 2 3 4 5 Wirth, Axel (2011). "Cybercrimes Pose Growing Threat to Medical Devices". Biomedical Instrumentation & Technology. 45 (1): 26–34. doi:10.2345/0899-8205-45.1.26. PMID   21322805.