Medical image sharing

Last updated
An image displayed on a medical image sharing platform MedicalImageSharing.jpg
An image displayed on a medical image sharing platform

Medical image sharing is the electronic exchange of medical images between hospitals, physicians and patients. Rather than using traditional media, such as a CD or DVD, and either shipping it out or having patients carry it with them, technology now allows for the sharing of these images using the cloud. The primary format for images is DICOM (Digital Imaging and Communications in Medicine). Typically, non-image data such as reports may be attached in standard formats like PDF (Portable Document Format) during the sending process. Additionally, there are standards in the industry, such as IHE Cross Enterprise Document Sharing for Imaging (XDS-I), for managing the sharing of documents between healthcare enterprises. A typical architecture involved in setup is a locally installed server, which sits behind the firewall, allowing secure transmissions with outside facilities. In 2009, the Radiological Society of North America launched the "Image Share" project, with the goal of giving patients control of their imaging histories (reports and images) by allowing them to manage these records as they would online banking or shopping. [1]

Contents

Uses

Benefits

Health

Medical Image Sharing contributes to many of the "Health" initiatives across the industry. Being able to instantly and electronically exchange medical information can improve communication between physicians, as well as with patients. [5]

Architecture

A typical architecture for a medical image sharing platform includes transmitting data from a system installed directly on the hospital network and behind the firewall, to and from an outside entity. Some of the standard architectural pieces involved include:

Integrations

Image sharing platforms can integrate directly with many hospital systems, such as:

Standards

Privacy

Government Initiatives

RSNA Image Share Project

RSNA Image Share is a network created to enable radiologists to share medical images with patients using personal health record (PHR) accounts. This pilot project, funded by the National Institute for Biomedical Imaging and Bioengineering (Nibib) and administered by RSNA, began enrolling patients in 2011. [1]

Currently, there are five participating medical centers in the program - Mount Sinai Hospital, New York, UCSF Medical Center, University of Maryland Medical Center, University of Chicago Medical Center, and Mayo Clinic. Patients at these sites are able to receive and access their medical images electronically. [1] As of January 2017, there were seven software companies who have completed the RSNA Image Share Validation, Agfa Healthcare, Ambra Health (formerly DICOM Grid), GE Healthcare, Lexmark Healthcare, LifeImage, Inc., Mach7 Technologies and Novarad. [13]

There are three main architectural pieces to the project:

  1. A clearinghouse in the cloud
  2. An Edge Server at each local radiology site
  3. A PHR to receive the images and reports

See also

Related Research Articles

<span class="mw-page-title-main">Picture archiving and communication system</span> Medical imaging technology

A picture archiving and communication system (PACS) is a medical imaging technology which provides economical storage and convenient access to images from multiple modalities. Electronic images and reports are transmitted digitally via PACS; this eliminates the need to manually file, retrieve, or transport film jackets, the folders used to store and protect X-ray film. The universal format for PACS image storage and transfer is DICOM. Non-image data, such as scanned documents, may be incorporated using consumer industry standard formats like PDF, once encapsulated in DICOM. A PACS consists of four major components: The imaging modalities such as X-ray plain film (PF), computed tomography (CT) and magnetic resonance imaging (MRI), a secured network for the transmission of patient information, workstations for interpreting and reviewing images, and archives for the storage and retrieval of images and reports. Combined with available and emerging web technology, PACS has the ability to deliver timely and efficient access to images, interpretations, and related data. PACS reduces the physical and time barriers associated with traditional film-based image retrieval, distribution, and display.

Digital Imaging and Communications in Medicine (DICOM) is a technical standard for the digital storage and transmission of medical images and related information. It includes a file format definition, which specifies the structure of a DICOM file, as well as a network communication protocol that uses TCP/IP to communicate between systems. The primary purpose of the standard is to facilitate communication between the software and hardware entities involved in medical imaging, especially those that are created by different manufacturers. Entities that utilize DICOM files include components of picture archiving and communication systems (PACS), such as imaging machines (modalities), radiological information systems (RIS), scanners, printers, computing servers, and networking hardware.

A hospital information system (HIS) is an element of health informatics that focuses mainly on the administrational needs of hospitals. In many implementations, a HIS is a comprehensive, integrated information system designed to manage all the aspects of a hospital's operation, such as medical, administrative, financial, and legal issues and the corresponding processing of services. Hospital information system is also known as hospital management software (HMS) or hospital management system.

<span class="mw-page-title-main">Electronic health record</span> Digital collection of patient and population electronically stored health information

An electronic health record (EHR) is the systematized collection of patient and population electronically stored health information in a digital format. These records can be shared across different health care settings. Records are shared through network-connected, enterprise-wide information systems or other information networks and exchanges. EHRs may include a range of data, including demographics, medical history, medication and allergies, immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and billing information.

<span class="mw-page-title-main">Telehealth</span> Health care by telecommunication

Telehealth is the distribution of health-related services and information via electronic information and telecommunication technologies. It allows long-distance patient and clinician contact, care, advice, reminders, education, intervention, monitoring, and remote admissions. Telemedicine is sometimes used as a synonym, or is used in a more limited sense to describe remote clinical services, such as diagnosis and monitoring. When rural settings, lack of transport, a lack of mobility, conditions due to outbreaks, epidemics or pandemics, decreased funding, or a lack of staff restrict access to care, telehealth may bridge the gap as well as provide distance-learning; meetings, supervision, and presentations between practitioners; online information and health data management and healthcare system integration. Telehealth could include two clinicians discussing a case over video conference; a robotic surgery occurring through remote access; physical therapy done via digital monitoring instruments, live feed and application combinations; tests being forwarded between facilities for interpretation by a higher specialist; home monitoring through continuous sending of patient health data; client to practitioner online conference; or even videophone interpretation during a consult.

<span class="mw-page-title-main">Teleradiology</span> Transmission and reading of radiological images

Teleradiology is the transmission of radiological patient images from procedures such as x-rays photographs, Computed tomography (CT), and MRI imaging, from one location to another for the purposes of sharing studies with other radiologists and physicians. Teleradiology allows radiologists to provide services without actually having to be at the location of the patient. This is particularly important when a sub-specialist such as an MRI radiologist, neuroradiologist, pediatric radiologist, or musculoskeletal radiologist is needed, since these professionals are generally only located in large metropolitan areas working during daytime hours. Teleradiology allows for specialists to be available at all times.

Health technology is defined by the World Health Organization as the "application of organized knowledge and skills in the form of devices, medicines, vaccines, procedures, and systems developed to solve a health problem and improve quality of lives". This includes pharmaceuticals, devices, procedures, and organizational systems used in the healthcare industry, as well as computer-supported information systems. In the United States, these technologies involve standardized physical objects, as well as traditional and designed social means and methods to treat or care for patients.

Health information exchange (HIE) is the mobilization of health care information electronically across organizations within a region, community or hospital system. Participants in data exchange are called in the aggregate Health Information Networks (HIN). In practice, the term HIE may also refer to the health information organization (HIO) that facilitates the exchange.

The ISO/TC 215 is the International Organization for Standardization's (ISO) Technical Committee (TC) on health informatics. TC 215 works on the standardization of Health Information and Communications Technology (ICT), to allow for compatibility and interoperability between independent systems.

Patient portals are healthcare-related online applications that allow patients to interact and communicate with their healthcare providers, such as physicians and hospitals. Typically, portal services are available on the Internet at all hours of the day and night. Some patient portal applications exist as stand-alone web sites and sell their services to healthcare providers. Other portal applications are integrated into the existing web site of a healthcare provider. Still others are modules added onto an existing electronic medical record (EMR) system. What all of these services share is the ability of patients to interact with their medical information via the Internet. Currently, the lines between an EMR, a personal health record, and a patient portal are blurring. For example, Intuit Health and Microsoft HealthVault describe themselves as personal health records (PHRs), but they can interface with EMRs and communicate through the Continuity of Care Record standard, displaying patient data on the Internet so it can be viewed through a patient portal.

Connected health is a socio-technical model for healthcare management and delivery by using technology to provide healthcare services remotely. Connected health, also known as technology enabled care (TEC) aims to maximize healthcare resources and provide increased, flexible opportunities for consumers to engage with clinicians and better self-manage their care. It uses readily available consumer technologies to deliver patient care outside of the hospital or doctor's office. Connected health encompasses programs in telehealth, remote care and disease and lifestyle management, often leverages existing technologies such as connected devices using cellular networks and is associated with efforts to improve chronic care. However, there is an increasing blur between software capabilities and healthcare needs whereby technologists are now providing the solutions to support consumer wellness and provide the connectivity between patient data, information and decisions. This calls for new techniques to guide Connected Health solutions such as "design thinking" to support software developers in clearly identifying healthcare requirements, and extend and enrich traditional software requirements gathering techniques.

<span class="mw-page-title-main">VistA</span> Health information system

The Veterans Health Information Systems and Technology Architecture (VISTA) is the system of record for the clinical, administrative and financial operations of the Veterans Health Administration VISTA consists of over 180 clinical, financial, and administrative applications integrated within a single shared lifelong database (figure 1).

Digital health is a discipline that includes digital care programs, technologies with health, healthcare, living, and society to enhance the efficiency of healthcare delivery and to make medicine more personalized and precise. It uses information and communication technologies to facilitate understanding of health problems and challenges faced by people receiving medical treatment and social prescribing in more personalised and precise ways. The definitions of digital health and its remits overlap in many ways with those of health and medical informatics.

A Vendor Neutral Archive (VNA) is a medical imaging technology in which images and documents are stored (archived) in a standard format with a standard interface, such that they can be accessed in a vendor-neutral manner by other systems.

In the field of electronic health records (EHR), Cross Enterprise Document Sharing (XDS) is a system of standards for cataloging and sharing patient records across health institutions.

<span class="mw-page-title-main">Integrating the Healthcare Enterprise</span> Non-profit organization

Integrating the Healthcare Enterprise (IHE) is a non-profit organization based in the US state of Illinois. It sponsors an initiative by the healthcare industry to improve the way computer systems share information. IHE was established in 1998 by a consortium of radiologists and information technology (IT) experts.

Ambra Health, is a software company that provides solutions for medical image sharing of DICOM and non-DICOM data between patients, physicians, and hospitals.

Federal and state governments, insurance companies and other large medical institutions are heavily promoting the adoption of electronic health records. The US Congress included a formula of both incentives and penalties for EMR/EHR adoption versus continued use of paper records as part of the Health Information Technology for Economic and Clinical Health (HITECH) Act, enacted as part of the, American Recovery and Reinvestment Act of 2009.

Clinical data standards are used to store and communicate information related to healthcare so that its meaning is unambiguous. They are used in clinical practice, in activity analysis and finding, and in research and development.

References

  1. 1 2 3 "RSNA Image Share Network Reaches First Patients". Radiological Society of North America. 1 September 2011. Archived from the original on 2013-10-23.
  2. 1 2 "Factors Shaping Imaging's Future". ImagingBiz. 9 February 2013. Archived from the original on 2016-03-04.
  3. 1 2 McNickle, Michelle (17 October 2012). "Report: Get Patient Data Out Of Silos - InformationWeek". InformationWeek.
  4. 1 2 3 Pedulli, Laura (26 March 2013). "Patient Engagement: The 'Blockbuster Drug' on Everyone's Radar". Clinical Innovation + Technology. Retrieved 2018-09-02.
  5. 1 2 3 Landro, Laura (1 April 2013). "Image Sharing Seeks to Reduce Repeat Scans". Wall Street Journal. Retrieved 2018-09-02.
  6. "Top 5 Benefits of Electronic Medical Records". Healthcare Data Solutions. Archived from the original on 2013-06-28.
  7. "Policy, Regulation and Strategy: Meaningful Use Meaningful Use".
  8. 1 2 "Telehealth". Health Resources and Services Administration. Archived from the original on 2013-04-25.
  9. Ratchinsky, Karin (23 April 2013). "Africa Went Mobile, Hospitals Need to go Cloud". Healthcare IT News. Retrieved 2018-09-02.
  10. HIPAA Act.
  11. HITECH Act Enforcement Interim Final Rule.
  12. Blue Button Home.
  13. "Seven Vendors Complete RSNA Image Share Validation Program". Radiological Society of North America . Retrieved 2017-07-25.