Megagametogenesis

Last updated

Megagametogenesis is the process of maturation of the female gametophyte, or megagametophyte, in plants. [1] During the process of megagametogenesis, the megaspore, which arises from megasporogenesis, develops into the embryonic sac, which is where the female gamete is housed. [2] These megaspores then develop into the haploid female gametophytes. [2] This occurs within the ovule, which is housed inside the ovary. [3]

Contents

Process

Refer to the figure above to observe the process of megagametogenesis, which is detailed below. Image 3-28-19 at 7.54 AM.jpg
Refer to the figure above to observe the process of megagametogenesis, which is detailed below.

Prior to megagametogenesis, a developing embryo undergoes meiosis during a process called megasporogenesis. Next, three out of four megaspores disintegrate, leaving only the megaspore that will undergo the megagametogenesis. [3] The following steps are shown in Figure 1, and detailed below.

  1. The remaining megaspore undergoes a round of mitosis. This results in a structure with two nuclei, also called a binucleate embryonic sac.
  2. The two nuclei migrate to opposite sides of the embryonic sac.
  3. Each haploid nucleus then undergoes two rounds of mitosis which creates 4 haploid nuclei on each end of the embryonic sac.
  4. One nucleus from each set of 4 migrates to the center of the embryonic sac. These form the binucleate endosperm mother cell. This leaves three remaining nuclei on the micropylar end and three remaining nuclei on the antipodal end. The nuclei on the micropylar end is composed of an egg cell, two synergid cells, and the micropyle, an opening that allows the pollen tube to enter the structure. [4] The nuclei on the antipodal end are simply known as the antipodal cells. [5] These cells are involved with nourishing the embryo, but often undergo programmed cell death before fertilization occurs. [3]
  5. Cell plates form around the antipodal nuclei, egg cell, and synergid cells. [6]

Variations

Plants exhibit three main types of megagametogenesis. The number of haploid nuclei in the functional megaspore that is involved in megagametogenesis is the main difference between these three types. [7]

Monosporic

Bisporic megagaetogenesis is shown in the figure and outlined below. Image 5-3-19 at 11.19 AM.jpg
Bisporic megagaetogenesis is shown in the figure and outlined below.

The most common type of megagametogenesis, monosporic megagametogenesis, is outlined above. This type of megagemetogenesis only allows one megaspore to undergo megagametogenesis, while the other three undergo programmed cell death. [8]

Bisporic

As the name implies, bisporic megagametogenesis involves two genetically different haploid nuclei. [9]

  1. These two nuclei undergo a round of mitosis.
  2. Then, the nuclei on the micropylar end of the structure undergo a second round of mitosis.
  3. Next, the nuclei rearrange to form a trinucleate endosperm mother cell and the characteristic arrangement of the micropylar end, with an egg cell and two synergid cells.
  4. Cell plates form around the egg cell and synergid cells.

Eudicots

In eudicot plants, the entire process happens inside the ovule of a plant. The details of the process vary by species, but the process described here is common. This process starts with a single diploid megasporocyte in the nucleus. This megasporocyte undergoes meiotic cell division to form four cells that are haploid. Three cells die and one that is most distant from the micropyle develops into the megaspore. This megaspore becomes larger and the nucleus of it undergoes mitosis three times until there are eight nuclei. These eight nuclei are then arranged into two groups of four. These groups both send a nucleus to the center of the cell which then becomes the polar nuclei. The three cells left at the end of the cell near the micropylar become the egg apparatus with an egg cell in the center and two synergids. A cell wall forms around the other set of nuclei and forms the antipodals. The cells in the center develop into the central cell. This entire structure with its eight nuclei is called the embryonic sac.

Post-megagametogenesis

Megagametogenesis creates the female gametophyte, which is an integral part of pollination, a very prominent process in plants. The male counterpart to megagametogenesis is called microgametogenesis. Microgametogenesis is the process of the formation of the male gametophyte. During pollination, the female gametophyte communicates with the pollen tube to ensure that it comes in contact with the ovule. [6] When contact is made, the pollen tube grows through the micropyle opening into a synergid cell, that dies when this occurs. The death of the synergid cell signals to the pollen tube to release the sperm. [6] This process creates the embryo, seed coat, and endosperm which, after pollination, will become crucial parts of the seed. [6]

Implications

Pollination is an essential process of global crop production. [10] Its success is economically crucial for farmers. [10] Additionally, pollination success is required for global food security. Cereals, or the seeds of grain crops, are most important staple food to humans around the world. They make up 48% of the calories consumed by humans. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Gamete</span> A haploid sex cell

A gamete is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. The name gamete was introduced by the German cytologist Eduard Strasburger in 1878.

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Fertilisation</span> Union of gametes of opposite sexes during the process of sexual reproduction to form a zygote

Fertilisation or fertilization, also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

<span class="mw-page-title-main">Sporangium</span> Enclosure in which spores are formed

A sporangium ; pl.: sporangia) is an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other groups form sporangia at some point in their life cycle. Sporangia can produce spores by mitosis, but in land plants and many fungi, sporangia produce genetically distinct haploid spores by meiosis.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<span class="mw-page-title-main">Apomixis</span> Replacement of the normal sexual reproduction by asexual reproduction, without fertilization

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

<span class="mw-page-title-main">Egg cell</span> Female reproductive cell in most anisogamous organisms

The egg cell or ovum is the female reproductive cell, or gamete, in most anisogamous organisms. The term is used when the female gamete is not capable of movement (non-motile). If the male gamete (sperm) is capable of movement, the type of sexual reproduction is also classified as oogamous. A nonmotile female gamete formed in the oogonium of some algae, fungi, oomycetes, or bryophytes is an oosphere. When fertilized, the oosphere becomes the oospore.

<span class="mw-page-title-main">Pollination</span> Biological process occurring in plants

Pollination is the transfer of pollen from an anther of a plant to the stigma of a plant, later enabling fertilisation and the production of seeds. Pollinating agents can be animals such as insects, for example beetles or butterflies; birds, and bats; water; wind; and even plants themselves. Pollinating animals travel from plant to plant carrying pollen on their bodies in a vital interaction that allows the transfer of genetic material critical to the reproductive system of most flowering plants. When self-pollination occurs within a closed flower. Pollination often occurs within a species. When pollination occurs between species, it can produce hybrid offspring in nature and in plant breeding work.

<span class="mw-page-title-main">Gametogenesis</span> Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

<span class="mw-page-title-main">Pollen tube</span> Tubular structure to conduct male gametes of plants to the female gametes

A pollen tube is a tubular structure produced by the male gametophyte of seed plants when it germinates. Pollen tube elongation is an integral stage in the plant life cycle. The pollen tube acts as a conduit to transport the male gamete cells from the pollen grain—either from the stigma to the ovules at the base of the pistil or directly through ovule tissue in some gymnosperms. In maize, this single cell can grow longer than 12 inches (30 cm) to traverse the length of the pistil.

<span class="mw-page-title-main">Sporophyte</span> Diploid multicellular stage in the life cycle of a plant or alga

A sporophyte is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte — is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule. On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules.

<span class="mw-page-title-main">Endosperm</span> Tissue inside seeds that is starchy in cereals and liquid in coconuts

The endosperm is a tissue produced inside the seeds of most of the flowering plants following double fertilization. It is triploid in most species, which may be auxin-driven. It surrounds the embryo and provides nutrition in the form of starch, though it can also contain oils and protein. This can make endosperm a source of nutrition in animal diet. For example, wheat endosperm is ground into flour for bread, while barley endosperm is the main source of sugars for beer production. Other examples of endosperm that forms the bulk of the edible portion are coconut "meat" and coconut "water", and corn. Some plants, such as certain orchids, lack endosperm in their seeds.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or double fertilisation is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigma of the carpel, the female reproductive structure of a flower. The pollen grain then takes in moisture and begins to germinate, forming a pollen tube that extends down toward the ovary through the style. The tip of the pollen tube then enters the ovary and penetrates through the micropyle opening in the ovule. The pollen tube proceeds to release the two sperm in the embryonic sacs.

<span class="mw-page-title-main">Microspore</span> Small land plant spores that develop into male gametophytes

Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspores are structures that are part of the alternation of generations in many seedless vascular cryptogams, all gymnosperms and all angiosperms. Plants with heterosporous life cycles using microspores and megaspores arose independently in several plant groups during the Devonian period. Microspores are haploid, and are produced from diploid microsporocytes by meiosis.

<span class="mw-page-title-main">Megaspore</span> Large spore in heterosporous plants that germinates into a female gametophyte

Megaspores, also called macrospores, are a type of spore that is present in heterosporous plants. These plants have two spore types, megaspores and microspores. Generally speaking, the megaspore, or large spore, germinates into a female gametophyte, which produces egg cells. These are fertilized by sperm produced by the male gametophyte developing from the microspore. Heterosporous plants include seed plants, water ferns (Salviniales), spikemosses (Selaginellaceae) and quillworts (Isoetaceae).

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid sor dikaryons and form through cell fusion.we can also say this type of reproduction as single pollination

<span class="mw-page-title-main">Embryonic sac</span>

A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes (megagametophytes). The megaspore mother cell arises within the megasporangium tissue.

<span class="mw-page-title-main">Sexual reproduction</span> Biological process

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

References

  1. "QuickGO". www.ebi.ac.uk. Retrieved 2019-02-28.
  2. 1 2 Drews GN, Koltunow AM (2011-12-26). "The female gametophyte". The Arabidopsis Book. 9: e0155. doi:10.1199/tab.0155. PMC   3268550 . PMID   22303279.
  3. 1 2 3 "ZFIN GO: Biological Process: embryonic sac development". zfin.org. Retrieved 2019-03-21.
  4. Dresselhaus T, Sprunck S, Wessel GM (February 2016). "Fertilization Mechanisms in Flowering Plants". Current Biology. 26 (3): R125-39. doi:10.1016/j.cub.2015.12.032. PMC   4934421 . PMID   26859271.
  5. Song X, Yuan L, Sundaresan V (December 2014). "Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis". Plant Reproduction. 27 (4): 197–203. doi:10.1007/s00497-014-0251-1. PMID   25389024. S2CID   9620746.
  6. 1 2 3 4 Yadegari R, Drews GN (2004-06-01). "Female gametophyte development". The Plant Cell. 16 Suppl (suppl 1): S133-41. doi:10.1105/tpc.018192. PMC   2643389 . PMID   15075395.
  7. de Boer-de-Jeu, M. J. (1978-02-02). "Ultrastructural aspects of megasporogenesis and initiation of megagametogenesis in Lilium". Bulletin de la Société Botanique de France. Actualités Botaniques. 125 (1–2): 175–181. doi: 10.1080/01811789.1978.10826321 . ISSN   0181-1789.
  8. "Plant Physiology, Sixth Edition". 6e.plantphys.net. Retrieved 2019-03-28.
  9. Willemse MT, van Went JL (1984). "The Female Gametophyte". In Johri BM (ed.). Embryology of Angiosperms. Springer Berlin Heidelberg. pp. 159–196. doi:10.1007/978-3-642-69302-1_4. ISBN   9783642693021.
  10. 1 2 Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012-04-26). "Spatial and temporal trends of global pollination benefit". PLOS ONE. 7 (4): e35954. Bibcode:2012PLoSO...735954L. doi: 10.1371/journal.pone.0035954 . PMC   3338563 . PMID   22563427.
  11. "grain". National Geographic Society. 2011-09-21. Retrieved 2019-03-21.

Further reading