Membrane osmometer

Last updated
The operating principle of a membrane osmometer. Water (below) is connected to the solution to be measured (above) via a membrane that lets water through. Osmometer.svg
The operating principle of a membrane osmometer. Water (below) is connected to the solution to be measured (above) via a membrane that lets water through.

A membrane osmometer is a device used to indirectly measure the number average molecular weight () of a polymer sample. One chamber contains pure solvent and the other chamber contains a solution in which the solute is a polymer with an unknown . The osmotic pressure of the solvent across the semipermeable membrane is measured by the membrane osmometer. [1] This osmotic pressure measurement is used to calculate for the sample.

Contents

Basic operation

A low concentration solution is created by adding a small amount of polymer to a solvent. This solution is separated from pure solvent by a semipermeable membrane. Solute cannot cross the semipermeable membrane but the solvent is able to cross the membrane. Solvent flows across the membrane to dilute the solution. The pressure required to stop the flow across the membrane is called the osmotic pressure. [1] The osmotic pressure is measured and used to calculate .

In an ideally dilute solution, van ‘t Hoff's law of osmotic pressure can be used to calculate from osmotic pressure. [1]

, number average molecular weight, mass/mole

, gas constant

, absolute temperature, typically Kelvin

, concentration of polymer, mass/volume

, osmotic pressure

Virial equations

In practice, the osmotic pressure produced by an ideally dilute solution would be too small to be accurately measured. For accurate measurements, solutions are not ideally dilute and a virial equation is used to account for deviations from ideal behavior and allow the calculation of . The virial equation takes a form similar to van ‘t Hoff's law of osmotic pressure, but contains additional constants to account for non-ideal behavior:

where are constants and is still the concentration of polymer 1. This virial equation may be represented in different additional forms:

where and are constants and .

Different membrane osmometry devices

Static membrane osmometry

Capillary tubes are attached to both the solvent and the solution compartments. In this case the osmotic pressure is provided by the additional pressure of the fluid in the solution compartment. The difference in the height of the fluid in the capillary tube of solution compartment versus the height of the fluid in the capillary tube of the solvent compartment is measured once the solution reaches equilibrium to calculate the osmotic pressure. [1]

, osmotic pressure

, change in height

, density

, acceleration due to gravity

The main disadvantage of static osmometry is the long time it takes for equilibrium to be reached. It often takes 3 or more hours after the solute is added for the static osmometer to reach equilibrium. [2]

Dynamic membrane osmometry

In a dynamic osmometer flow of solvent is measured and a counteracting pressure is created to stop the flow. Flow rate of the solvent is measured by the movement of an air bubble in a capillary tube of the solvent. [2] The pressure of the solvent compartment is directly changed by raising or lowering a reservoir of solvent connected to the solvent compartment. [2] The pressure difference between the two compartments is the osmotic pressure. This can be calculate by measuring the change in height or measured directly with a flexible diaphragm. [2] Since the pressure is directly changed, an accurate measurement of osmotic pressure can be achieved in 10 – 30 minutes. [2]

Limitations of membrane osmometry

Membrane osmometry measurements are best used for 30,000 1,000,000 grams/mole. For above 1,000,000 grams/mole, the solute is too dilute to create a measurable osmotic pressure. [1] For below 30,000 grams per mole, the solute permeates through the membrane and the measurements are inaccurate. [2]

Another issue for membrane osmometer is the limited membrane types. The most common membrane used is cellulose acetate; however, cellulose acetate can only be used with toluene and water. [3] While toluene and water are useful solvent for many compounds, not all polymers are miscible in toluene or water. Regenerated cellulose membranes can be used for many other solvents, but are hard to obtain. [3]

Related Research Articles

Osmotic pressure

Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.

In chemistry, the molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample, measured in moles. The molar mass is a bulk, not molecular, property of a substance. The molar mass is an average of many instances of the compound, which often vary in mass due to the presence of isotopes. Most commonly, the molar mass is computed from the standard atomic weights and is thus a terrestrial average and a function of the relative abundance of the isotopes of the constituent atoms on Earth. The molar mass is appropriate for converting between the mass of a substance and the amount of a substance for bulk quantities.

A monolayer is a single, closely packed layer of atoms, molecules, or cells. In some cases it is referred to as a self-assembled monolayer. Monolayers of layered crystals like graphene and molybdenum disulfide are generally called 2D materials.

In chemical thermodynamics, activity is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century. In his publication about the quantity of gases absorbed by water, he described the results of his experiments:

… water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.

Surface energy Quantifies the disruption of intermolecular bonds that occurs when a surface is created

Surface free energy or interfacial free energy or surface energy quantifies the disruption of intermolecular bonds that occurs when a surface is created. In the physics of solids, surfaces must be intrinsically less energetically favorable than the bulk of a material, otherwise there would be a driving force for surfaces to be created, removing the bulk of the material. The surface energy may therefore be defined as the excess energy at the surface of a material compared to the bulk, or it is the work required to build an area of a particular surface. Another way to view the surface energy is to relate it to the work required to cut a bulk sample, creating two surfaces. There is "excess energy" as a result of the now-incomplete, unrealized bonding at the two surfaces.

In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution, for example, molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.

The Starling equation describes the net flow of fluid across a semipermeable membrane. It is named after Ernest Starling. It describes the balance between capillary pressure, interstitial pressure, and osmotic pressure. The classic Starling equation has in recent years been revised. The Starling principle of fluid exchange is key to understanding how plasma fluid (solvent) within the bloodstream moves to the space outside the bloodstream.

Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action. The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ.

Debye–Hückel equation Equation to calculate activity coefficients of ions in aqueous solution as a function of ionic strength

The chemists Peter Debye and Erich Hückel noticed that solutions that contain ionic solutes do not behave ideally even at very low concentrations. So, while the concentration of the solutes is fundamental to the calculation of the dynamics of a solution, they theorized that an extra factor that they termed gamma is necessary to the calculation of the activity coefficients of the solution. Hence they developed the Debye–Hückel equation and Debye–Hückel limiting law. The activity is only proportional to the concentration and is altered by a factor known as the activity coefficient . This factor takes into account the interaction energy of ions in solution.

Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution. The osmolarity of a solution is usually expressed as Osm/L, in the same way that the molarity of a solution is expressed as "M". Whereas molarity measures the number of moles of solute per unit volume of solution, osmolarity measures the number of osmoles of solute particles per unit volume of solution. This value allows the measurement of the osmotic pressure of a solution and the determination of how the solvent will diffuse across a semipermeable membrane (osmosis) separating two solutions of different osmotic concentration.

Flory–Huggins solution theory Lattice model of polymer solutions

Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying assumptions, it generates useful results for interpreting experiments.

Vapor phase osmometry (VPO), also known as vapor-pressure osmometry, is an experimental technique for the determination of a polymer's number average molecular weight, Mn. It works by taking advantage of the decrease in vapor pressure that occurs when solutes are added to pure solvent. This technique can be used for polymers with a molecular weight of up to 20,000 though accuracy is best for those below 10,000. Although membrane osmometry is also based on the measurement of colligative properties, it has a lower bound of 25,000 for sample molecular weight that can be measured owing to problems with membrane permeation.

The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution. The Debye–Hückel equation provides a starting point for modern treatments of non-ideality of electrolyte solutions.

Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient A2, can be calculated.

In a polymer solution, a theta solvent is a solvent in which polymer coils act like ideal chains, assuming exactly their random walk coil dimensions. Therefore, the Mark–Houwink equation exponent is in a theta solvent. Thermodynamically, the excess chemical potential of mixing between a polymer and a theta solvent is zero.

Osmosis chemical process

Osmosis is the spontaneous net movement or diffusion of solvent molecules through a selectively permeable membrane from a region of high water potential to a region of low water potential, in the direction that tends to equalize the solute concentrations on the two sides. It may also be used to describe a physical process in which any solvent moves across a selectively permeable membrane separating two solutions of different concentrations. Osmosis can be made to do work. Osmotic pressure is defined as the external pressure required to be applied so that there is no net movement of solvent across the membrane. Osmotic pressure is a colligative property, meaning that the osmotic pressure depends on the molar concentration of the solute but not on its identity.

An osmotic coefficient is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.

Pitzer equations are important for the understanding of the behaviour of ions dissolved in natural waters such as rivers, lakes and sea-water. They were first described by physical chemist Kenneth Pitzer. The parameters of the Pitzer equations are linear combinations of parameters, of a virial expansion of the excess Gibbs free energy, which characterise interactions amongst ions and solvent. The derivation is thermodynamically rigorous at a given level of expansion. The parameters may be derived from various experimental data such as the osmotic coefficient, mixed ion activity coefficients, and salt solubility. They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory, but Pitzer parameters are more difficult to determine experimentally than SIT parameters.

A depletion force is an effective attractive force that arises between large colloidal particles that are suspended in a dilute solution of depletants, which are smaller solutes that are preferentially excluded from the vicinity of the large particles. One of the earliest reports of depletion forces that lead to particle coagulation is that of Bondy, who observed the separation or 'creaming' of rubber latex upon addition of polymer depletant molecules to solution. More generally, depletants can include polymers, micelles, osmolytes, ink, mud, or paint dispersed in a continuous phase.

References

  1. 1 2 3 4 5 Rudin, Alfred; Choi, Phillip (2013). The Elements of Polymer Science and Engineering (3rd ed.). Oxyford: Academic Press.
  2. 1 2 3 4 5 6 Chanda, Manas (2000). Advanced Polymer Chemistry. Dekker Marcel Inc.
  3. 1 2 Holding, S.R.; Meehan, E. (1995). Molecular Weight Characterization of Synthetic Polymers. Shrewsburry: RAPRA Technology Ltd.