Membrane roofing

Last updated

Membrane roofing is a type of roofing system for buildings, RV's, Ponds and in some cases tanks. It is used to create a watertight covering to protect the interior of a building. Membrane roofs are most commonly made from synthetic rubber, thermoplastic (PVC or similar material), or modified bitumen. Membrane roofs are most commonly used in commercial application, though they are becoming increasingly common in residential application. [1] [2]

Contents

Types

Single-Ply Membranes - There are three types of single-ply, or elastoplastic, products in use today that are defined by the chemical properties they possess. These are: (1) Cured (or vulcanized) elastomers, (2) Uncured elastomers, and (3) plastomers.

Cured Elastomers (often referred to as Thermoset ) – Thermosets are synthetic rubbers that have undergone the vulcanization or "Curing" process. Seams of materials are bonded by adhesives or chemicals, which over time weaken and separate unless maintained or reinforced. The finished roof’s thickness is usually between 30 and 120 mils(thousandths of an inch) (0.75 mm to 1.50 mm). The most commonly used Cured Elastomer membranes are Ethylene Propylene Diene Monomer (commonly EPDM) and Neoprene, although all thermoset products combined fail to account for more than 10% of all commercial roofing. This is in part due to studies being released in the 1980s-early 2000's showing the average lifespan of thermoset membranes between 15-20 years, although the products have undergone massive alterations since then. [3]

Uncured Elastomers (sometimes grouped with Thermosets for simplicity) - Uncured elastomers are installed in a manner similar to thermoplastics in that they can be heat or solvent welded. The material then cures over time once exposed to the elements, and then exhibits the same qualities as vulcanized elastomers. The most commonly used Uncured Elastomers are Chlorosulfonated Polyethylene (CSPE), Chlorinated Polyethylene (CPE), Polyisobutylene (PIB), Nitrile Butadiene Polymer (NBP), although none of the products are known to be commonly used in the last decade, in part due to environmental concerns brought up regarding the chemical curing processes in the late 90s. Thermosets are often referenced for their easy installation methods, high chemical resistances, having higher impact resistances (for some membranes), and resistance to high temperatures.

Plastomers (often referred to as Thermoplastics ) – Thermoplastics are membranes that are heat welded and develop strength in the welds at least equal to the original membrane material, forming a much stronger bond than chemically bonded thermosets. The most commonly used thermoplastics are PVC, KEE and TPO, taking up over 55% of the commercial roofing market. However, a common misconception is that these are the only types of materials.

Modified Bitumen – Polymer Modified Bitumen Membranes were developed in Europe in the mid-1960's and have been in common use throughout the United States since 1975. they are composed of one or more premanufactured sheets consisting of asphalt, reinforcing layers, and in some cases a surfacing is applied. During manufacture, plastics or rubbers are added to the bitumen while heating, modifying its properties to give it a higher softening point and greater elasticity. There are several ways of connecting pieces of this material. The most common method for bonding seams is by torch-application, however the options of hot-mopping, using cold adhesive, and self-adhering materials are still sometimes used. Copolymers commonly used to modify asphalt include atactic polypropylene (APP), styrene-butadiene-styrene (SBS), styrene-butadiene rubber (SBR), and styrene-ethylene-butylene-styrene (SEBS). [4]

Advantages Over asphalt flat roofing systems

These application types of membrane roofing show distinct advantages over the previously more common flat roofing method of asphalt and gravel (commonly referred to as Built-Up-Roofs or "BUR"). In asphalt and gravel application, it can be very difficult to create a proper seal at all seams and connection points. This can cause a roof to leak early in its lifespan, and require much more maintenance. When installed correctly, newer materials are either seamless, or have seams as strong as the body. This eliminates most of the leakage concerns associated with flat roofing systems.

Repairs for asphalt and gravel roofs can be problematic, largely because it is difficult to locate the exact point of a leak. Newer systems can be patched relatively easily because breaks and leaks are easier to locate. [5]

Originally asphalt roofing required a layer of gravel above it for two reasons. First, asphalt with direct exposure to sunlight degrades much faster, mainly due to the expansion and contraction throughout a day, and also the damage created by UV rays. Secondly, asphalt needs weight above to hold it down, because it sits on the top of a building, instead of being attached to it. Each of the newer types of membrane roofing systems contain materials that resist expansion and contraction, as well as reflect much of the UV rays. In addition, because these membranes either lack seams or have stronger bonding than traditional BUR seams, when expansion and contraction does occur does not create leaks and breaks at these seams. These newer roofing systems are also usually attached directly to the top of a building, which eliminates the need for excess weight above.

Related Research Articles

<span class="mw-page-title-main">Vulcanization</span> Process of hardening rubber

Vulcanization is a range of processes for hardening rubbers. The term originally referred exclusively to the treatment of natural rubber with sulfur, which remains the most common practice. It has also grown to include the hardening of other (synthetic) rubbers via various means. Examples include silicone rubber via room temperature vulcanizing and chloroprene rubber (neoprene) using metal oxides.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Styrene-butadiene</span> Synthetic rubber polymer

Styrene-butadiene or styrene-butadiene rubber (SBR) describe families of synthetic rubbers derived from styrene and butadiene. These materials have good abrasion resistance and good aging stability when protected by additives. In 2012, more than 5.4 million tonnes of SBR were processed worldwide. About 50% of car tires are made from various types of SBR. The styrene/butadiene ratio influences the properties of the polymer: with high styrene content, the rubbers are harder and less rubbery. SBR is not to be confused with the thermoplastic elastomer, styrene-butadiene block copolymer, although being derived from the same monomers.

<span class="mw-page-title-main">Elastomer</span> Polymer with rubber-like elastic properties

An elastomer is a polymer with viscoelasticity and with weak intermolecular forces, generally low Young's modulus (E) and high failure strain compared with other materials. The term, a portmanteau of elastic polymer, is often used interchangeably with rubber, although the latter is preferred when referring to vulcanisates. Each of the monomers which link to form the polymer is usually a compound of several elements among carbon, hydrogen, oxygen and silicon. Elastomers are amorphous polymers maintained above their glass transition temperature, so that considerable molecular reconformation is feasible without breaking of covalent bonds. At ambient temperatures, such rubbers are thus relatively compliant and deformable. Their primary uses are for seals, adhesives and molded flexible parts.

<span class="mw-page-title-main">O-ring</span> Mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.

<span class="mw-page-title-main">EPDM rubber</span> Type of synthetic rubber

EPDM rubber is a type of synthetic rubber that is used in many applications.

<span class="mw-page-title-main">Flat roof</span> Type of roof

A flat roof is a roof which is almost level in contrast to the many types of sloped roofs. The slope of a roof is properly known as its pitch and flat roofs have up to approximately 10°. Flat roofs are an ancient form mostly used in arid climates and allow the roof space to be used as a living space or a living roof. Flat roofs, or "low-slope" roofs, are also commonly found on commercial buildings throughout the world. The U.S.-based National Roofing Contractors Association defines a low-slope roof as having a slope of 3 in 12 (1:4) or less.

A synthetic rubber is an artificial elastomer. They are polymers synthesized from petroleum byproducts. About 32 million metric tons of rubbers are produced annually in the United States, and of that amount two thirds are synthetic. Synthetic rubber, just like natural rubber, has many uses in the automotive industry for tires, door and window profiles, seals such as O-rings and gaskets, hoses, belts, matting, and flooring. They offer a different range of physical and chemical properties which can improve the reliability of a given product or application. Synthetic rubbers are superior to natural rubbers in two major respects: thermal stability, and resistance to oils and related compounds. They are more resistant to oxidizing agents, such as oxygen and ozone which can reduce the life of products like tires.

<span class="mw-page-title-main">Polybutadiene</span> Type of synthetic rubber formed from the polymerization of butadiene

Polybutadiene [butadiene rubber, BR] is a synthetic rubber. It offers high elasticity, high resistance to wear, good strength even without fillers, and excellent abrasion resistance when filled and vulcanized. "Polybutadiene" is a collective name for homopolymers formed from the polymerization of the monomer 1,3-butadiene. The IUPAC refers to polybutadiene as "poly(buta-1,3-diene)". Historically, an early generation of synthetic polybutadiene rubber produced in Germany by Bayer using sodium as a catalyst was known as "Buna rubber". Polybutadiene is typically crosslinked with sulphur, however, it has also been shown that it can be UV cured when bis-benzophenone additives are incorporated into the formulation.

Kraton is the trade name given to a number of high-performance elastomers manufactured by Kraton Polymers, and used as synthetic replacements for rubber. Kraton polymers offer many of the properties of natural rubber, such as flexibility, high traction, and sealing abilities, but with increased resistance to heat, weathering, and chemicals.

Thermoplastic elastomers (TPE), sometimes referred to as thermoplastic rubbers (TPR), are a class of copolymers or a physical mix of polymers that consist of materials with both thermoplastic and elastomeric properties.

Thermoplastic olefin, thermoplastic polyolefin (TPO), or olefinic thermoplastic elastomers refer to polymer/filler blends usually consisting of some fraction of a thermoplastic, an elastomer or rubber, and usually a filler.

A waterstop is an element of a concrete structure, intended to prevent the passages of fluids when embedded in and running continuously through concrete joints. Waterstops are grouped in two distinct categories. Waterstops for joints without any movement of the adjoint concrete sections and waterstops for joints with movement of the adjoint concrete sections.

A roof coating is a monolithic, fully adhered, fluid applied roofing membrane. Many roof coatings are elastomeric, that is, they have elastic properties that allow them to stretch and return to their original shape without damage.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

Thermoplastic vulcanizates (TPV) are dynamically vulcanized alloys consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. They are part of the thermoplastic elastomer (TPE) family of polymers but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. There are almost 100 grades in the S portfolio that are used globally in the automotive, household appliance, electrical, construction, and healthcare markets. The name Santoprene was trademarked in 1977 by Monsanto, and the trademark is now owned by Celanese. Similar material is available from Elastron and others.

<span class="mw-page-title-main">Bituminous waterproofing</span> Roll roofing and waterproofing material

Bituminous waterproofing systems are designed to protect residential and commercial buildings. Bitumen is a material made up of organic liquids that are highly sticky, viscous, and waterproof. Systems incorporating bituminous-based substrates are sometimes used to construct roofs, in the form of "roofing felt" or "roll roofing" products.

<span class="mw-page-title-main">Charles Goodyear Medal</span> Award

The Charles Goodyear Medal is the highest honor conferred by the American Chemical Society, Rubber Division. Established in 1941, the award is named after Charles Goodyear, the discoverer of vulcanization, and consists of a gold medal, a framed certificate and prize money. The medal honors individuals for "outstanding invention, innovation, or development which has resulted in a significant change or contribution to the nature of the rubber industry". Awardees give a lecture at an ACS Rubber Division meeting, and publish a review of their work in the society's scientific journal Rubber Chemistry and Technology.

<span class="mw-page-title-main">Acrylonitrile styrene acrylate</span> Chemical compound

Acrylonitrile styrene acrylate (ASA), also called acrylic styrene acrylonitrile, is an amorphous thermoplastic developed as an alternative to acrylonitrile butadiene styrene (ABS), that has improved weather resistance. It is an acrylate rubber-modified styrene acrylonitrile copolymer. It is used for general prototyping in 3D printing, where its UV resistance and mechanical properties make it an excellent material for use in fused filament fabrication printers, particularly for outdoor applications. ASA is also widely used in the automotive industry.

References

  1. "Membrane Roofing For Flat Roofs" . Retrieved 2007-04-15.
  2. Quintero, Lillian (2 August 2023). "Membrane Roofing: A Majestic Solution for Modern Construction". Medium. Retrieved 2 August 2023.
  3. "Commercial Low Slope Roofing Materials Guide" (PDF). National Roofing Contractors Association. Retrieved 2021-04-22.
  4. "Roof Coatings" (PDF). Roof Coatings Manufacturers Association. Retrieved 2007-04-15.
  5. "Boynton Beach Roofing". Saturday, 12 June 2021