Metabologen

Last updated

A metabologen is defined as a morphogen (molecule) that can initiate, promote and maintain metabolism and homeostasis. Based on this definition, bone morphogenetic proteins (BMPs) are metabologens, since they are involved in iron homeostasis, brown fat adipogenesis and energy metabolism. Professor A. Hari Reddi and Anand Reddi in Cytokine Growth Factor Rev were the first to propose the term metabologen (as reviewed in a special issue of Cytokine Growth Factor Review guest edited by Dr. A. Hari Reddi entitled Bone Morphogenetic Proteins, Stem Cells and Regenerative Medicine). [1] [2] [3]

Related Research Articles

Bone morphogenetic proteins (BMPs) are a group of growth factors also known as cytokines and as metabologens. Originally discovered by their ability to induce the formation of bone and cartilage, BMPs are now considered to constitute a group of pivotal morphogenetic signals, orchestrating tissue architecture throughout the body. The important functioning of BMP signals in physiology is emphasized by the multitude of roles for dysregulated BMP signalling in pathological processes. Cancerous disease often involves misregulation of the BMP signalling system. Absence of BMP signalling is, for instance, an important factor in the progression of colon cancer, and conversely, overactivation of BMP signalling following reflux-induced esophagitis provokes Barrett's esophagus and is thus instrumental in the development of esophageal adenocarcinoma.

<span class="mw-page-title-main">Bone morphogenetic protein 7</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 7 or BMP7 is a protein that in humans is encoded by the BMP7 gene.

<span class="mw-page-title-main">Bone morphogenetic protein 2</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 2 or BMP-2 belongs to the TGF-β superfamily of proteins.

<span class="mw-page-title-main">Bone morphogenetic protein 4</span> Human protein and coding gene

Bone morphogenetic protein 4 is a protein that in humans is encoded by BMP4 gene. BMP4 is found on chromosome 14q22-q23.

<span class="mw-page-title-main">Bone morphogenetic protein 6</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 6 is a protein that in humans is encoded by the BMP6 gene.

<span class="mw-page-title-main">Bone morphogenetic protein 5</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 5 is a protein that in humans is encoded by the BMP5 gene.

<span class="mw-page-title-main">Bone morphogenetic protein 3</span> Protein-coding gene in the species Homo sapiens

Bone morphogenetic protein 3, also known as osteogenin, is a protein in humans that is encoded by the BMP3 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 6</span> Protein-coding gene in the species Homo sapiens

SMAD family member 6, also known as SMAD6, is a protein that in humans is encoded by the SMAD6 gene.

<span class="mw-page-title-main">BMPR1A</span> Bone morphogenetic protein receptor

The bone morphogenetic protein receptor, type IA also known as BMPR1A is a protein which in humans is encoded by the BMPR1A gene. BMPR1A has also been designated as CD292.

<span class="mw-page-title-main">Hemojuvelin</span>

Hemojuvelin (HJV), also known as repulsive guidance molecule C (RGMc) or hemochromatosis type 2 protein (HFE2), is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis in humans, a severe form of hemochromatosis. In humans, the hemojuvelin protein is encoded by the HFE2 gene. Hemojuvelin is a member of the repulsive guidance molecule family of proteins. Both RGMa and RGMb are found in the nervous system, while hemojuvelin is found in skeletal muscle and the liver.

Decapentaplegic (Dpp) is a key morphogen involved in the development of the fruit fly Drosophila melanogaster and is the first validated secreted morphogen. It is known to be necessary for the correct patterning and development of the early Drosophila embryo and the fifteen imaginal discs, which are tissues that will become limbs and other organs and structures in the adult fly. It has also been suggested that Dpp plays a role in regulating the growth and size of tissues. Flies with mutations in decapentaplegic fail to form these structures correctly, hence the name. Dpp is the Drosophila homolog of the vertebrate bone morphogenetic proteins (BMPs), which are members of the TGF-β superfamily, a class of proteins that are often associated with their own specific signaling pathway. Studies of Dpp in Drosophila have led to greater understanding of the function and importance of their homologs in vertebrates like humans.

Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in development.

<span class="mw-page-title-main">GDF2</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 2 (GDF2) also known as bone morphogenetic protein (BMP)-9 is a protein that in humans is encoded by the GDF2 gene. GDF2 belongs to the transforming growth factor beta superfamily.

<span class="mw-page-title-main">GDF6</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 6 (GDF6) is a protein that in humans is encoded by the GDF6 gene.

<span class="mw-page-title-main">GDF10</span> Protein-coding gene in the species Homo sapiens

Growth differentiation factor 10 (GDF10) also known as bone morphogenetic protein 3B (BMP-3B) is a protein that in humans is encoded by the GDF10 gene.

<span class="mw-page-title-main">Repulsive guidance molecule A</span> Protein-coding gene in the species Homo sapiens

Repulsive guidance molecule A (RGMa) is a bone morphogenetic protein (BMP) co-receptor of the repulsive guidance molecule family. Together with BMPR1A and BMPR1B, as well as ACVR2A and BMPR2, it binds BMPs thereby activating the intracellular SMAD1/5/8 signalling pathway. In humans this protein is encoded by the RGMA gene.

<span class="mw-page-title-main">SOSTDC1</span> Protein-coding gene in the species Homo sapiens

Sclerostin domain-containing protein 1 is a protein that in humans is encoded by the SOSTDC1 gene.

<span class="mw-page-title-main">Adipogenesis</span>

Adipogenesis is the formation of adipocytes from stem cells. It involves 2 phases, determination, and terminal differentiation. Determination is mesenchymal stem cells committing to the adipocyte precursor cells, also known as lipoblasts or preadipocytes which lose the potential to differentiate to other types of cells such as chondrocytes, myocytes, and osteoblasts. Terminal differentiation is that preadipocytes differentiate into mature adipocytes. Adipocytes can arise either from preadipocytes resident in adipose tissue, or from bone-marrow derived progenitor cells that migrate to adipose tissue.

<span class="mw-page-title-main">Repulsive guidance molecule B</span> Protein-coding gene in the species Homo sapiens

Repulsive guidance molecule B (RGMb), also known as DRAGON, is a bone morphogenetic protein (BMP) co-receptor of the repulsive guidance molecule family. In humans this protein is encoded by the RGMB gene.

A. Hari Reddi is a Distinguished Professor and holder of the Lawrence J. Ellison Endowed Chair in Musculoskeletal Molecular Biology at the University of California, Davis. He was previously the Virginia M. and William A. Percy Chair and Professor in Orthopaedic Surgery, Professor of Biological Chemistry, and Professor of Oncology at the Johns Hopkins University School of Medicine. Professor Reddi's research played an indispensable role in the identification, isolation and purification of bone morphogenetic proteins (BMPs) that are involved in bone formation and repair. The molecular mechanism of bone induction studied by Professor Reddi led to the conceptual advance in tissue engineering that morphogens in the form of metabologens bound to an insoluble extracellular matrix scaffolding act in collaboration to stimulate stem cells to form cartilage and bone. The Reddi laboratory has also made important discoveries unraveling the role of the extracellular matrix in bone and cartilage tissue regeneration and repair.

References

  1. Reddi AH, Reddi A (2009). "Bone morphogenetic proteins (BMPs): from morphogens to metabologens". Cytokine Growth Factor Rev. 20 (5–6): 341–2. doi:10.1016/j.cytogfr.2009.10.015. PMID   19900831.
  2. Schulz TJ, Tseng YH (2009). "Emerging Role of Bone Morphogenetic Proteins in Adipogenesis and Energy Metabolism". Cytokine Growth Factor Rev. 20 (5–6): 523–31. doi:10.1016/j.cytogfr.2009.10.019. PMC   2799934 . PMID   19896888.
  3. Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY (2007). "Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance". J Clin Invest. 117 (7): 1933–9. doi:10.1172/JCI31342. PMC   1904317 . PMID   17607365.