Metric interval temporal logic

Last updated

In model checking, the Metric Interval Temporal Logic (MITL) is a fragment of Metric Temporal Logic (MTL). This fragment is often preferred to MTL because some problems that are undecidable for MTL become decidable for MITL.

Contents

Definition

A MITL formula is an MTL formula, such that each set of reals used in subscript are intervals, which are not singletons, and whose bounds are either a natural number or are infinite.[ citation needed ]

Difference from MTL

MTL can express a statement such as the sentence S: "P held exactly ten time units ago". This is impossible in MITL. Instead, MITL can say T: "P held between 9 and 10 time units ago". Since MITL can express T but not S, in a sense, MITL is a restriction of MTL which allows only less precise statements.

Problems that MITL avoids

One reason to want to avoid a statement such as S is that its truth value may change an arbitrary number of times in a single time unit. Indeed, the truth value of this statement may change as many times as the truth value of P changes, and P itself may change an arbitrary number of time in a single time unit.

Let us now consider a system, such as a timed automaton or a signal automaton, which want to know at each instant whether S holds or not. This system should recall everything that occurred in the last 10 time units. As seen above, it means that it must recall an arbitrarily large number of events. This can not be implemented by a system with finite memory and clocks.

Bounded variability

One of the main advantage of MITL is that each operator has the bounded variability property. Example:

Given the statement T defined above. Each time the truth value of T switches from false to true, it remains true for at least one time unit. Proof: At a time t where T becomes true, it means that:

Hence, P was true exactly 9 time units ago. It follows that, for each , at time , P was true time units ago. Since , at time , T holds.

A system, at each instant, wants to know the value of T. Such a system must recall what occurred during the last ten time units. However, thanks to the bounded variability property, it must recall at most 10 time units when T becomes true. And hence 11 times when T becomes false. Thus this system must recall at most 21 events, and hence can be implemented as a timed automaton or a signal automaton.

Examples

Examples of MITL formulas:

Fragments

Safety-MTL0,∞

The fragment Safety-MTL0,v is defined as the subset of MITL0,∞ containing only formulas in positive normal form where the interval of every until operator has an upper bound. For example, the formula which states that each is followed, less than one time unit later, by a , belongs to this logic. [1]

Open and closed MITL

The fragment Open-MTL contains the formula in positive normal form such that:

The fragment Closed-MITL contains the negation of formulas of Open-MITL.

Flat and Coflat MITL

The fragment Flat-MTL contains the formula in positive normal form such that:

The fragment Coflat-MITL contains the negation of formulas of Flat-MITL.

Non-strict variant

Given any fragment L, the fragment Lns is the restriction of L in which only non strict operators are used.

MITL0,∞ and MITL0

Given any fragment L, the fragment L0,∞ is the subset of L where the lower bound of each interval is 0 or the upper bound is infinity. Similarly we denote by L0 (respectively, L) the subset of L such that the lower bound of each interval is 0 (respectively, the upper bound of each interval is ∞).

Expressiveness over signals

Over signals, MITL0 is as expressive as MITL. This can be proven by applying the following rewriting rules to a MITL formula. [2]

  • is equivalent to (the construction for half-closed and closed intervals is similar).
  • is equivalent to if .
  • is equivalent to if .
  • is equivalent to .

Applying those rewriting rules exponentially increases the size of the formula. Indeed, the numbers and are traditionally written in binary, and those rules should be applied times.

Expressiveness over timed words

Contrary to the case of signals, MITL is strictly more expressive than MITL0,∞. The rewriting rules given above do not apply in the case of timed words because, in order to rewrite the assumption must be that some event occurs between times 0 and , which is not necessarily the case.

Satisfiability problem

The problem of deciding whether a MITL formula is satisfiable over a signal is in PSPACE-complete. [3]

References needed

R. Alur, T. Feder, and T.A. Henzinger. The Benefits of Relaxing Punctuality. Journal of the ACM, 43(1):116–146, 1996. R. Alur and T.A. Henzinger. Logics and Models of Real-Time: A Survey. In Proc. REX Workshop, Real-time: Theory in Practice, pages 74–106. LNCS 600, Springer, 1992. T.A. Henzinger. It's about Time: Real-time Logics Reviewed. In Proc. CONCUR'98, pages 439–454. LNCS 1466, Springer, 1998.

Related Research Articles

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time. It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized. It is used in formal verification of software or hardware artifacts, typically by software applications known as model checkers, which determine if a given artifact possesses safety or liveness properties. For example, CTL can specify that when some initial condition is satisfied, then all possible executions of a program avoid some undesirable condition. In this example, the safety property could be verified by a model checker that explores all possible transitions out of program states satisfying the initial condition and ensures that all such executions satisfy the property. Computation tree logic belongs to a class of temporal logics that includes linear temporal logic (LTL). Although there are properties expressible only in CTL and properties expressible only in LTL, all properties expressible in either logic can also be expressed in CTL*.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

Probabilistic Computation Tree Logic (PCTL) is an extension of computation tree logic (CTL) that allows for probabilistic quantification of described properties. It has been defined in the paper by Hansson and Jonsson.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In modal logic, standard translation is a logic translation that transforms formulas of modal logic into formulas of first-order logic which capture the meaning of the modal formulas. Standard translation is defined inductively on the structure of the formula. In short, atomic formulas are mapped onto unary predicates and the objects in the first-order language are the accessible worlds. The logical connectives from propositional logic remain untouched and the modal operators are transformed into first-order formulas according to their semantics.

In modal logic, the modal depth of a formula is the deepest nesting of modal operators. Modal formulas without modal operators have a modal depth of zero.

Dynamic epistemic logic (DEL) is a logical framework dealing with knowledge and information change. Typically, DEL focuses on situations involving multiple agents and studies how their knowledge changes when events occur. These events can change factual properties of the actual world : for example a red card is painted in blue. They can also bring about changes of knowledge without changing factual properties of the world : for example a card is revealed publicly to be red. Originally, DEL focused on epistemic events. We only present in this entry some of the basic ideas of the original DEL framework; more details about DEL in general can be found in the references.

Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like until, next, since and previous operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics.

In model checking, a subfield of computer science, a signal or timed state sequence is an extension of the notion of words in a formal language, in which letters are continuously emitted. While a word is traditionally defined as a function from a set of non-negative integers to letters, a signal is a function from a set of real numbers to letters. This allow the use of formalisms similar to the ones of automata theory to deal with continuous signals.

In model checking, a subfield of computer science, a clock is a mathematical object used to model time. More precisely, a clock measures how much time passed since a particular event occurs, in this sense, a clock is more precisely an abstraction of a stopwatch. In a model of some particular program, the value of the clock may either be the time since the program was started, or the time since a particular event occurred in the program. Those clocks are used in the definition of timed automaton, signal automaton, timed propositional temporal logic and clock temporal logic. They are also used in programs such as UPPAAL which implement timed automata.

In model checking, a field of computer science, timed propositional temporal logic (TPTL) is an extension of propositional linear temporal logic (LTL) in which variables are introduced to measure times between two events. For example, while LTL allows to state that each event p is eventually followed by an event q, TPTL furthermore allows to give a time limit for q to occur.

In automata theory, an alternating timed automaton (ATA) is a mix of both timed automaton and alternating finite automaton. That is, it is a sort of automata which can measure time and in which there exists universal and existential transition.

A non-normal modal logic is a variant of modal logic that deviates from the basic principles of normal modal logics.

References

  1. Bulychev, Peter; David, Alexandre; Larsen, Kim G.; Guangyuan, Li (June 2014). "Efficient controller synthesis for a fragment of MTL0,∞". Acta Informatica. 51 (3–4): 166. doi:10.1007/s00236-013-0189-z. S2CID   253779696.
  2. Bersani, Marcello; Rossi, Matteo; San Pietro, Pierluigi (2013). "A Tool for Deciding the Satisfiability of Continuous-Time Metric Temporal Logic" (PDF). 2013 20th International Symposium on Temporal Representation and Reasoning. Vol. 20. p. 202. doi:10.1109/TIME.2013.20. hdl: 11311/964235 . ISBN   978-1-4799-2240-6.
  3. Henzinger, T.A.; Raskin, J.F.; Schobbens, P.-Y. (1998). "The regular real-time languages". Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 1443. p. 591. doi:10.1007/BFb0055086. ISBN   978-3-540-64781-2.