Michael J. Zigmond

Last updated

Michael. J. Zigmond is an American neuroscientist. He is emeritus Professor of Neurology at University of Pittsburgh since 2017, previously Professor of Neurology, Psychiatry, and Pharmacology, and Editor-in-Chief of Elsevier's Progress in Neurobiology. [1] He is an Elected Fellow, since 2009, of the American Association for the Advancement of Science. [2] His interests include neuroprotection and neuroplasticity, health aging, and Parkinson's disease. [3] Since 2011, he has also served as Distinguished International Professor at Fudan University. [4]

Contents

Education

He earned his B.S. in chemical engineering at Carnegie-Mellon University and Ph.D. in biopsychology at University of Chicago in 1968. [4]

Selected publications

Related Research Articles

<span class="mw-page-title-main">White matter</span> Areas of myelinated axons in the brain

White matter refers to areas of the central nervous system (CNS) that are mainly made up of myelinated axons, also called tracts. Long thought to be passive tissue, white matter affects learning and brain functions, modulating the distribution of action potentials, acting as a relay and coordinating communication between different brain regions.

<span class="mw-page-title-main">Basal ganglia</span> Group of subcortical nuclei involved in the motor and reward systems

The basal ganglia (BG) or basal nuclei are a group of subcortical nuclei found in the brains of vertebrates. In humans and other primates, differences exist, primarily in the division of the globus pallidus into external and internal regions, and in the division of the striatum. Positioned at the base of the forebrain and the top of the midbrain, they have strong connections with the cerebral cortex, thalamus, brainstem and other brain areas. The basal ganglia are associated with a variety of functions, including regulating voluntary motor movements, procedural learning, habit formation, conditional learning, eye movements, cognition, and emotion.

<span class="mw-page-title-main">Dopaminergic pathways</span> Projection neurons in the brain that synthesize and release dopamine

Dopaminergic pathways in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. Each pathway is a set of projection neurons, consisting of individual dopaminergic neurons.

<span class="mw-page-title-main">Nigrostriatal pathway</span> Bilateral pathway in the brain

The nigrostriatal pathway is a bilateral dopaminergic pathway in the brain that connects the substantia nigra pars compacta (SNc) in the midbrain with the dorsal striatum in the forebrain. It is one of the four major dopamine pathways in the brain, and is critical in the production of movement as part of a system called the basal ganglia motor loop. Dopaminergic neurons of this pathway release dopamine from axon terminals that synapse onto GABAergic medium spiny neurons (MSNs), also known as spiny projection neurons (SPNs), located in the striatum.

<span class="mw-page-title-main">Ventral tegmental area</span> Group of neurons on the floor of the midbrain

The ventral tegmental area (VTA), also known as the ventral tegmental area of Tsai, or simply ventral tegmentum, is a group of neurons located close to the midline on the floor of the midbrain. The VTA is the origin of the dopaminergic cell bodies of the mesocorticolimbic dopamine system and other dopamine pathways; it is widely implicated in the drug and natural reward circuitry of the brain. The VTA plays an important role in a number of processes, including reward cognition and orgasm, among others, as well as several psychiatric disorders. Neurons in the VTA project to numerous areas of the brain, ranging from the prefrontal cortex to the caudal brainstem and several regions in between.

Neuropoiesis is the process by which neural stem cells differentiate to form mature neurons, astrocytes, and oligodendrocytes in the adult mammal. This process is also referred to as adult neurogenesis.

<span class="mw-page-title-main">Catherine Dulac</span> French–American biologist

Catherine Dulac is a French–American biologist. She is the Higgins Professor in Molecular and Cellular Biology at Harvard University, where she served as department chair from 2007 to 2013. She is also an investigator at the Howard Hughes Medical Institute. She was born in 1963 in France. She came to the United States for her postdoctoral study in 1991.

<i>N</i>-Arachidonoyl dopamine Chemical compound

N-Arachidonoyl dopamine (NADA) is an endocannabinoid that acts as an agonist of the CB1 receptor and the transient receptor potential V1 (TRPV1) ion channel. NADA was first described as a putative endocannabinoid (agonist for the CB1 receptor) in 2000 and was subsequently identified as an endovanilloid (agonist for TRPV1) in 2002. NADA is an endogenous arachidonic acid based lipid found in the brain of rats, with especially high concentrations in the hippocampus, cerebellum, and striatum. It activates the TRPV1 channel with an EC50 of approximately of 50 nM which makes it the putative endogenous TRPV1 agonist.

<span class="mw-page-title-main">Excitatory amino acid transporter 3</span> Protein found in humans

Excitatory amino acid transporter 3 (EAAT3), is a protein that in humans is encoded by the SLC1A1 gene.

(<i>Z</i>)-4-Amino-2-butenoic acid Chemical compound

(Z)-4-Amino-2-butenoic acid (CACA, cis-4-aminocrotonic acid) is a GABA receptor partial agonist selective for the GABAA (previously known as GABAC) subtype.

Pridopidine is an orally administrated small molecule investigational drug. Pridopidine is a selective and potent Sigma-1 Receptor agonist. It is being developed by Prilenia Therapeutics and is currently in late-stage clinical development for Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS).

<span class="mw-page-title-main">Anne B. Young</span> American neuroscientist

Anne Buckingham Young is an American physician and neuroscientist who has made major contributions to the study of neurodegenerative diseases, with a focus on movement disorders like Huntington's disease and Parkinson's disease. Young completed her undergraduate studies at Vassar College and earned a dual MD/PhD from Johns Hopkins Medical School. She has held faculty positions at University of Michigan and Harvard University. She became the first female chief of service at Massachusetts General Hospital when she was appointed Chief of Neurology in 1991. She retired from this role and from clinical service in 2012. She is a member of many academic societies and has won numerous awards. Young is also the only person to have been president of both the international Society for Neuroscience and the American Neurological Association.

<span class="mw-page-title-main">Douglas G. McMahon</span>

Douglas G. McMahon is a professor of Biological Sciences and Pharmacology at Vanderbilt University. McMahon has contributed several important discoveries to the field of chronobiology and vision. His research focuses on connecting the anatomical location in the brain to specific behaviors. As a graduate student under Gene Block, McMahon identified that the basal retinal neurons (BRNs) of the molluscan eye exhibited circadian rhythms in spike frequency and membrane potential, indicating they are the clock neurons. He became the 1986 winner of the Society for Neuroscience's Donald B. Lindsley Prize in Behavioral Neuroscience for his work. Later, he moved on to investigate visual, circadian, and serotonergic mechanisms of neuroplasticity. In addition, he helped find that constant light can desynchronize the circadian cells in the suprachiasmatic nucleus (SCN). He has always been interested in the underlying causes of behavior and examining the long term changes in behavior and physiology in the neurological modular system. McMahon helped identifying a retrograde neurotransmission system in the retina involving the melanopsin containing ganglion cells and the retinal dopaminergic amacrine neurons.

Edward M. Stricker is an American neuroscientist, now retired, formerly a University Professor at the University of Pittsburgh and Dean at its Honors College.

Fernando Garcia de Mello is a renowned neurochemist from Brazil. He obtained his degree in Biochemistry in 1968 from the State University of Rio de Janeiro. Fernando Mello started his scientific training as an undergraduate student at the Brazilian National Institute of Cancer, and later at the Institute of Biophysics from the Federal University of Rio de Janeiro, being mentored by dr. Firmino de Castro, which greatly influenced him to have a more humanistic approach towards the students that he would train. It was only during his post-doc period (1973-1976) at the National Institutes of Health under supervision of dr. Marshall Warren Nirenberg that Mello began his research in Neurochemistry, using the embryonary Retina as a model for his investigations.

Stephen F. Heinemann (1939–2014) was a professor of neuroscience at the Salk Institute. He was an early researcher in the field of molecular neuroscience, contributing to the current knowledge of how nerves communicate with each other, and the role of neurotransmitters. Stephen Heinemann died August 6, 2014, of kidney failure.

<span class="mw-page-title-main">George J. Augustine</span> American neuroscientist

George James Augustine is an American neuroscientist known for his work on presynaptic mechanisms of neurotransmitter release and his contributions to the development of optogenetics, a tool to control neural activity using light. He is best known as the author of the popular neuroscience textbook published by Oxford University Press along with lead author Dale Purves.

<span class="mw-page-title-main">Bita Moghaddam</span> Iranian-American neuroscientist

Bita Moghaddam is an Iranian-American neuroscientist and author. She is currently the Ruth Matarazzo Professor of Behavioral Neuroscience at Oregon Health & Science University. Moghaddam investigates the neuronal processes underlying emotion and cognition as a first step to designing strategies to treat and prevent brain illnesses.

<span class="mw-page-title-main">Pierre Magistretti</span> Italian-Swiss physician and neuroscientist

Pierre J. Magistretti is an Italian and Swiss neuroscientist and physician. He is a professor emeritus of neuroscience at EPFL, University of Geneva and University of Lausanne. Until 2012, he was the director of the EPFL's Brain Mind Institute and director of the Center for Psychiatric Neuroscience of the University of Lausanne and Lausanne University Hospital. Since 2012 he has been distinguished professor at King Abdullah University of Science and Technology where he was dean of the division of biological and environmental sciences and engineering between 2012 and 2020.

<span class="mw-page-title-main">Howard Fields (neuroscientist)</span> American academic (born 1939)

Howard Lincoln Fields is an American neuroscientist and clinical neurologist with expertise in pain and in opioid pharmacology. He is currently professor of neurology and physiology emeritus at the University of California, San Francisco (UCSF).

References

  1. "Michael J. Zigmond". elsevier.com. Retrieved December 8, 2017.
  2. "Michael J. Zigmond". aaas.org. Retrieved December 8, 2017.
  3. "Michael J. Zigmond". pitt.edu. Retrieved December 8, 2017.
  4. 1 2 "Lab". pitt.edu. Retrieved December 8, 2017.