Microdosing

Last updated

Microdosing, or micro-dosing, involves the administration of sub-therapeutic doses of drugs to study their effects in humans, aiming to gather preliminary data on safety, pharmacokinetics, and potential therapeutic benefits without producing significant physiological effects. This is called a "Phase 0 study" and is usually conducted before clinical Phase I to predict whether a drug is viable for the next phase of testing. Human microdosing aims to reduce the resources spent on non-viable drugs and the amount of testing done on animals. [1]

Contents

Less commonly, the term "microdosing" is also sometimes used to refer to precise dispensing of small amounts of a drug substance (e.g., a powder API) for a drug product (e.g., a capsule) [2] and, when the drug substance also happens to be liquid, this can potentially overlap what is termed microdispensing. For example, psychedelic microdosing. [3]

Techniques

The basic approach is to label a candidate drug using the radio isotope carbon-14, [4] then administer the compound to human volunteers at levels typically about 100 times lower than the proposed therapeutic dosage (from around 1 to 100 micrograms but not above).[ citation needed ]

As only microdose levels of the drug are used, analytical methods are limited. Extreme sensitivity is needed. Accelerator mass spectrometry (AMS) is the most common method for microdose analysis. AMS was developed in the late 1970s from two distinct research threads with a common goal: [5] an improvement in radiocarbon dating that would make efficient use of datable material and that would extend the routine and maximum reach of radiocarbon dating. AMS is routinely used in geochronology and archaeology, [6] but biological applications began appearing in 1990 mainly due to the work of scientists at Lawrence Livermore National Laboratory. AMS service is now more accessible for biochemical quantitation from several private companies and non-commercial access to AMS is available at the National Institutes of Health (NIH) Research Resource at Lawrence Livermore National Laboratory, [7] or through the development of smaller affordable spectrometers. AMS does not measure the radioactivity of carbon-14 in microdose samples. AMS, like other mass spectrometry methods, measures ionic species according to mass-to-charge ratio.

Psychedelic

Psychedelic microdosing is the practice of using sub-threshold doses (microdoses) of serotonergic psychedelic drugs in an attempt to improve creativity, boost physical energy level, emotional balance, increase performance on problems-solving tasks and to treat anxiety, depression and addiction, [8] though there is very little evidence supporting these purported effects as of 2019. [9]

Impact of psychedelic microdosing

In 2021 it was reported in a study done that an increased conscientiousness was seen due to microdosing. [10] Microdosing was seen to have improved mental health after microdosing with psychedelics after 30 days. [11] More research is needed to ultimately decide whether or not microdosing helps those who suffer from depression and anxiety. [11] Microdosing has not seen to improve participants motor responses, attention, and cognitive problem-solving abilities. [11] Microdosing is still under investigation as to whether it works or not. Researchers are investigating into microdosing more and more, the placebo effect causes difficulties in research on this topic. [12]

In January 2006, the European Union Microdose AMS Partnership Programme (EUMAPP) was launched. [13] Ten organizations from five different countries (United Kingdom, Sweden, Netherlands, France, and Poland) will study various approaches to the basic AMS technique. The study is set to be published in 2009. [14]

One of the most meaningful potential outcomes of Phase-0/Microdosing studies is the early termination of development. In 2017, Okour et al published the first example in literature of a termination of an oral drug based on IV microdose data. [15]

See also

Related Research Articles

<i>N</i>,<i>N</i>-Dimethyltryptamine Chemical compound

N,N-Dimethyltryptamine is a substituted tryptamine that occurs in many plants and animals, including humans, and which is both a derivative and a structural analog of tryptamine. DMT is used as a psychedelic drug and prepared by various cultures for ritual purposes as an entheogen.

<span class="mw-page-title-main">LSD</span> Hallucinogenic drug

Lysergic acid diethylamide, commonly known as LSD, and known colloquially as acid or lucy, is a potent psychedelic drug. Effects typically include intensified thoughts, emotions, and sensory perception. At sufficiently high dosages, LSD manifests primarily mental, visual, and auditory hallucinations. Dilated pupils, increased blood pressure, and increased body temperature are typical.

<span class="mw-page-title-main">Psilocybin</span> Chemical compound found in some species of mushrooms

Psilocybin is a naturally occurring psychedelic prodrug compound produced by more than 200 species of fungi. The most potent are members of genus Psilocybe, such as P. azurescens, P. semilanceata, and P. cyanescens, but psilocybin has also been isolated from approximately a dozen other genera. Psilocybin is itself biologically inactive but is quickly converted by the body to psilocin, which has mind-altering effects similar, in some aspects, to those of lysergic acid diethylamide (LSD), mescaline, and dimethyltryptamine (DMT). In general, the effects include euphoria, visual and mental hallucinations, changes in perception, distorted sense of time, and perceived spiritual experiences. It can also cause adverse reactions such as nausea and panic attacks.

<span class="mw-page-title-main">Psychedelic drug</span> Hallucinogenic class of psychoactive drug

Psychedelics are a subclass of hallucinogenic drugs whose primary effect is to trigger non-ordinary mental states and a perceived "expansion of consciousness". Also referred to as classic hallucinogens or serotonergic hallucinogens, the term psychedelic is sometimes used more broadly to include various types of hallucinogens, such as those which are atypical or adjacent to psychedelia like salvia and MDMA, respectively.

<span class="mw-page-title-main">Proteomics</span> Large-scale study of proteins

Proteomics is the large-scale study of proteins. Proteins are vital macromolecules of all living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body.

<span class="mw-page-title-main">Salvinorin A</span> Chemical compound

Salvinorin A is the main active psychotropic molecule in Salvia divinorum. Salvinorin A is considered a dissociative hallucinogen.

Psychedelic therapy refers to the proposed use of psychedelic drugs, such as psilocybin, MDMA, LSD, and ayahuasca, to treat mental disorders. As of 2021, psychedelic drugs are controlled substances in most countries and psychedelic therapy is not legally available outside clinical trials, with some exceptions.

In pharmacology, bioavailability is a subcategory of absorption and is the fraction (%) of an administered drug that reaches the systemic circulation.

<span class="mw-page-title-main">Metabolomics</span> Scientific study of chemical processes involving metabolites

Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprints that specific cellular processes leave behind", the study of their small-molecule metabolite profiles. The metabolome represents the complete set of metabolites in a biological cell, tissue, organ, or organism, which are the end products of cellular processes. Messenger RNA (mRNA), gene expression data, and proteomic analyses reveal the set of gene products being produced in the cell, data that represents one aspect of cellular function. Conversely, metabolic profiling can give an instantaneous snapshot of the physiology of that cell, and thus, metabolomics provides a direct "functional readout of the physiological state" of an organism. There are indeed quantifiable correlations between the metabolome and the other cellular ensembles, which can be used to predict metabolite abundances in biological samples from, for example mRNA abundances. One of the ultimate challenges of systems biology is to integrate metabolomics with all other -omics information to provide a better understanding of cellular biology.

<span class="mw-page-title-main">Accelerator mass spectrometry</span> Accelerator that accelerates ions to high speeds before analysis

Accelerator mass spectrometry (AMS) is a form of mass spectrometry that accelerates ions to extraordinarily high kinetic energies before mass analysis. The special strength of AMS among the different methods of mass spectrometry is its ability to separate a rare isotope from an abundant neighboring mass. The method suppresses molecular isobars completely and in many cases can also separate atomic isobars. This makes possible the detection of naturally occurring, long-lived radio-isotopes such as 10Be, 36Cl, 26Al and 14C.

<span class="mw-page-title-main">Mercaptopurine</span> Chemical compound

Mercaptopurine (6-MP), sold under the brand name Purinethol among others, is a medication used for cancer and autoimmune diseases. Specifically it is used to treat acute lymphocytic leukemia (ALL), acute promyelocytic leukemia (APL), Crohn's disease, and ulcerative colitis. For acute lymphocytic leukemia it is generally used with methotrexate. It is taken orally.

<span class="mw-page-title-main">Pharmacokinetics</span> Branch of pharmacology

Pharmacokinetics, sometimes abbreviated as PK, is a branch of pharmacology dedicated to describing how the body affects a specific substance after administration. The substances of interest include any chemical xenobiotic such as pharmaceutical drugs, pesticides, food additives, cosmetics, etc. It attempts to analyze chemical metabolism and to discover the fate of a chemical from the moment that it is administered up to the point at which it is completely eliminated from the body. Pharmacokinetics is based on mathematical modeling that places great emphasis on the relationship between drug plasma concentration and the time elapsed since the drug's administration. Pharmacokinetics is the study of how an organism affects the drug, whereas pharmacodynamics (PD) is the study of how the drug affects the organism. Both together influence dosing, benefit, and adverse effects, as seen in PK/PD models.

<span class="mw-page-title-main">Enobosarm</span> Investigational selective androgen receptor modulator

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition in people taking GLP-1 receptor agonists like semaglutide. It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength. As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.

In the field of pharmacokinetics, the area under the curve (AUC) is the definite integral of the concentration of a drug in blood plasma as a function of time. In practice, the drug concentration is measured at certain discrete points in time and the trapezoidal rule is used to estimate AUC. In pharmacology, the area under the plot of plasma concentration of a drug versus time after dosage gives insight into the extent of exposure to a drug and its clearance rate from the body.

<span class="mw-page-title-main">Phases of clinical research</span> Clinical trial stages using human subjects

The phases of clinical research are the stages in which scientists conduct experiments with a health intervention to obtain sufficient evidence for a process considered effective as a medical treatment. For drug development, the clinical phases start with testing for drug safety in a few human subjects, then expand to many study participants to determine if the treatment is effective. Clinical research is conducted on drug candidates, vaccine candidates, new medical devices, and new diagnostic assays.

<span class="mw-page-title-main">Aticaprant</span> Investigational antidepressant compound

Aticaprant, also known by its developmental codes JNJ-67953964, CERC-501, and LY-2456302, is a κ-opioid receptor (KOR) antagonist which is under development for the treatment of major depressive disorder. A regulatory application for approval of the medication is expected to be submitted by 2025. Aticaprant is taken by mouth.

<span class="mw-page-title-main">Aerosol mass spectrometry</span> Application of mass spectrometry to aerosol particles

Aerosol mass spectrometry is the application of mass spectrometry to the analysis of the composition of aerosol particles. Aerosol particles are defined as solid and liquid particles suspended in a gas (air), with size range of 3 nm to 100 μm in diameter and are produced from natural and anthropogenic sources, through a variety of different processes that include wind-blown suspension and combustion of fossil fuels and biomass. Analysis of these particles is important owing to their major impacts on global climate change, visibility, regional air pollution and human health. Aerosols are very complex in structure, can contain thousands of different chemical compounds within a single particle, and need to be analysed for both size and chemical composition, in real-time or off-line applications.

<span class="mw-page-title-main">Ligandrol</span> Chemical compound

LGD-4033, also known by the developmental code name VK5211 and by the black-market name Ligandrol, is a selective androgen receptor modulator (SARM) which is under development for the treatment of muscle atrophy in people with hip fracture. It was also under development for the treatment of cachexia, hypogonadism, and osteoporosis, but development for these indications was discontinued. LGD-4033 has been reported to dose-dependently improve lean body mass and muscle strength in preliminary clinical trials, but is still being developed and has not been approved for medical use. The drug is taken by mouth.

<span class="mw-page-title-main">Vosilasarm</span> Chemical compound

Vosilasarm, also known by the development codes RAD140 and EP0062 and by the black-market name Testolone or Testalone, is a selective androgen receptor modulator (SARM) which is under development for the treatment of hormone-sensitive breast cancer. It is specifically under development for the treatment of androgen receptor-positive, estrogen receptor-negative, HER2-negative advanced breast cancer. Vosilasarm was also previously under development for the treatment of sarcopenia, osteoporosis, and weight loss due to cancer cachexia, but development for these indications was discontinued. The drug is taken by mouth.

Psychedelic microdosing involves consuming sub-threshold doses (microdoses) of serotonergic psychedelic drugs like LSD and psilocybin to potentially enhance creativity, energy, emotional balance, problem-solving abilities, and to address anxiety, depression, and addiction. This practice has gained popularity in the 21st century. A June 2024 report by the RAND Corporation suggests that among adults in the United States reporting the use of psilocybin in the past year, nearly half reported microdosing the last time they used it.

References

  1. Burt T, Young G, Lee W, Kusuhara H, Langer O, Rowland M, et al. (November 2020). "Phase 0/microdosing approaches: time for mainstream application in drug development?". Nature Reviews. Drug Discovery. 19 (11): 801–818. doi:10.1038/s41573-020-0080-x. PMID   32901140.
  2. Tablets & Capsules, March 2009. "Micro-dosing equipment fills niche in R&D, clinical trial materials".
  3. Gregoire C (13 January 2016). "Everything You Wanted to Know About Microdosing (But Were Afraid to Ask)". The Huffington Post .
  4. Babin V, Taran F, Audisio D (June 2022). "Late-Stage Carbon-14 Labeling and Isotope Exchange: Emerging Opportunities and Future Challenges". JACS Au. 2 (6): 1234–1251. doi:10.1021/jacsau.2c00030. PMC   9241029 . PMID   35783167.
  5. Kutschera W (2023). "An overview of world-wide AMS facilities". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 538: 87–94. Bibcode:2023NIMPB.538...87K. doi:10.1016/j.nimb.2023.02.016.
  6. "Accelerator Mass Spectrometry, C14 Dating, What is AMS?". Carbon Dating Service, AMS Miami - Beta Analytic. 2015-04-14. Retrieved 2023-05-31.
  7. Broek TA, Ognibene TJ, McFarlane KJ, Moreland KC, Brown TA, Bench G (July 2021). "Conversion of the LLNL/CAMS 1 MV biological AMS system to a semi-automated natural abundance 14C spectrometer: system optimization and performance evaluation". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 499 (published 2021-05-21): 124–132. Bibcode:2021NIMPB.499..124B. doi:10.1016/j.nimb.2021.01.022. PMC   10854407 . PMID   38344059.
  8. Fadiman J (2016-01-01). "Microdose research: without approvals, control groups, double blinds, staff or funding". Psychedelic Press. XV.
  9. Anderson T, Petranker R, Christopher A, Rosenbaum D, Weissman C, Dinh-Williams LA, et al. (July 2019). "Psychedelic microdosing benefits and challenges: an empirical codebook". Harm Reduction Journal. 16 (1): 43. doi: 10.1186/s12954-019-0308-4 . PMC   6617883 . PMID   31288862.
  10. Dressler HM, Bright SJ, Polito V (2021-03-24). "Exploring the relationship between microdosing, personality and emotional insight: A prospective study". Journal of Psychedelic Studies. 5 (1): 9–16. doi: 10.1556/2054.2021.00157 .
  11. 1 2 3 Rootman JM, Kiraga M, Kryskow P, Harvey K, Stamets P, Santos-Brault E, et al. (June 2022). "Psilocybin microdosers demonstrate greater observed improvements in mood and mental health at one month relative to non-microdosing controls". Scientific Reports. 12 (1): 11091. Bibcode:2022NatSR..1211091R. doi:10.1038/s41598-022-14512-3. PMC   9246852 . PMID   35773270.
  12. MD PG (2022-09-19). "The popularity of microdosing of psychedelics: What does the science say?". Harvard Health. Retrieved 2024-04-16.
  13. "European Union Microdose AMS Partnership Programme". European Commission: CORDIS EU Research Results.
  14. Burt T, Yoshida K, Lappin G, Vuong L, John C, de Wildt SN, et al. (April 2016). "Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development". Clinical and Translational Science. 9 (2): 74–88. doi:10.1111/cts.12390. PMC   5351314 . PMID   26918865.
  15. Okour M, Derimanov G, Barnett R, Fernandez E, Ferrer S, Gresham S, et al. (March 2018). "A human microdose study of the antimalarial drug GSK3191607 in healthy volunteers". British Journal of Clinical Pharmacology. 84 (3): 482–489. doi:10.1111/bcp.13476. PMC   5809343 . PMID   29168205.

Further reading