Milk immunity is the protection provided to immune system of an infant via the biologically active components in milk, typically provided by the infant's mother.
All mammalian milk contains water, sugar, fat, vitamins, and protein with the variation within and between species and individuals differing mainly in the amount of these components. [1] Other than the variation in quantity of these components, not a lot is known about bio-active or immune-modulating factors in many mammalian species. However, in comparison to other mammalian milk, human milk has the most oligosaccharide diversity. [2]
Ruminant mothers do not transfer immunity to their infants during pregnancy, which makes milk the first introduction to maternal immunity calves receive. [3] Bovine milk contains both immunoglobulins A and G, but in contrast to human milk where IgA is the most abundant, IgG is more abundant. [4] Secretory Component, IgM, both anti-inflammatory and inflammatory cytokines, and other proteins with antimicrobial functions are also present in bovine milk. [3]
Human milk immunity is the protection provided to the immune system of an infant via the biologically active components in human milk. Human milk was previously thought to only provide passive immunity primarily through Secretory IgA, but advances in technology have led to the identification of various immune-modulating components. [5] [6] [7] Human milk constituents provide nutrition and protect the immunologically naive infant as well as regulate the infant's own immune development and growth. [8]
Immune factors and immune-modulating components in human milk include cytokines, growth factors, proteins, microbes, and human milk oligosaccharides. [9] [10] Immune factors in human milk are categorized mainly as anti-inflammatory [6] primarily working without inducing inflammation or activating the complement system. [11]Crop milk is a secretion from the crop of a bird that is regurgitated to feed their offspring. [12] Birds that produce this secretion include pigeons, flamingos, emperor penguins, and doves. [13] Pigeon milk contains some immune-modulating factors such as microbes and IgA, as well as other components with similar biological activities to mammalian milk including pigeon growth factor, and transferrin. [14]
Colostrum is the first form of milk produced by the mammary glands of humans and other mammals immediately following delivery of the newborn. It may be called beestings, the traditional word from Old English dialects, when referring to the first milk of a cow or other animals. Most species will begin to generate colostrum just prior to giving birth. Colostrum has an especially high amount of bioactive compounds compared to mature milk to give the newborn the best possible start to life. Specifically, colostrum contains antibodies to protect the newborn against disease and infection, and immune and growth factors and other bioactives that help to activate a newborn's immune system, jumpstart gut function, and seed a healthy gut microbiome in the first few days of life. The bioactives found in colostrum are essential for a newborn's health, growth and vitality. Colostrum strengthens a baby's immune system and is filled with white blood cells to protect it from infection.
Gut-associated lymphoid tissue (GALT) is a component of the mucosa-associated lymphoid tissue (MALT) which works in the immune system to protect the body from invasion in the gut.
Gut microbiota, gut microbiome, or gut flora are the microorganisms, including bacteria, archaea, fungi, and viruses, that live in the digestive tracts of animals. The gastrointestinal metagenome is the aggregate of all the genomes of the gut microbiota. The gut is the main location of the human microbiome. The gut microbiota has broad impacts, including effects on colonization, resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, controlling immune function, and even behavior through the gut–brain axis.
Crop milk is a secretion from the lining of the crop of parent birds in some species that is regurgitated to young birds. It is found among all pigeons and doves where it is also referred to as pigeon milk. Crop milk is also secreted from the crop of flamingos and the male emperor penguin, suggesting independent evolution of this trait. Unlike in mammals where typically only females produce milk, crop milk is produced by both males and females in pigeons and flamingos; and in penguins, only by the male. Lactation in birds is controlled by prolactin, which is the same hormone that causes lactation in mammals. Crop milk is a holocrine secretion non-sex specific in response to brooding unlike in mammals where milk is an exocrine secretion. Crop milk contains both fat and protein, as with mammalian milk, but unlike mammalian milk, it contains no carbohydrates.
Microfold cells are found in the gut-associated lymphoid tissue (GALT) of the Peyer's patches in the small intestine, and in the mucosa-associated lymphoid tissue (MALT) of other parts of the gastrointestinal tract. These cells are known to initiate mucosal immunity responses on the apical membrane of the M cells and allow for transport of microbes and particles across the epithelial cell layer from the gut lumen to the lamina propria where interactions with immune cells can take place.
Long-term close-knit interactions between symbiotic microbes and their host can alter host immune system responses to other microorganisms, including pathogens, and are required to maintain proper homeostasis. The immune system is a host defense system consisting of anatomical physical barriers as well as physiological and cellular responses, which protect the host against harmful microorganisms while limiting host responses to harmless symbionts. Humans are home to 1013 to 1014 bacteria, roughly equivalent to the number of human cells, and while these bacteria can be pathogenic to their host most of them are mutually beneficial to both the host and bacteria.
Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. Microbiota include bacteria, archaea, protists, fungi, and viruses, and have been found to be crucial for immunologic, hormonal, and metabolic homeostasis of their host.
Mucosal immunology is the study of immune system responses that occur at mucosal membranes of the intestines, the urogenital tract, and the respiratory system. The mucous membranes are in constant contact with microorganisms, food, and inhaled antigens. In healthy states, the mucosal immune system protects the organism against infectious pathogens and maintains a tolerance towards non-harmful commensal microbes and benign environmental substances. Disruption of this balance between tolerance and deprivation of pathogens can lead to pathological conditions such as food allergies, irritable bowel syndrome, susceptibility to infections, and more.
Galactooligosaccharides (GOS), also known as oligogalactosyllactose, oligogalactose, oligolactose or transgalactooligosaccharides (TOS), belong to the group of prebiotics. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by stimulating the growth and/or activity of beneficial bacteria in the colon. GOS occurs in commercially available products such as food for both infants and adults.
Bifidobacterium is a genus of gram-positive, nonmotile, often branched anaerobic bacteria. They are ubiquitous inhabitants of the gastrointestinal tract though strains have been isolated from the vagina and mouth of mammals, including humans. Bifidobacteria are one of the major genera of bacteria that make up the gastrointestinal tract microbiota in mammals. Some bifidobacteria are used as probiotics.
The lung microbiota is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower respiratory tract particularly on the mucous layer and the epithelial surfaces. These microorganisms include bacteria, fungi, viruses and bacteriophages. The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. They are aerobes as well as anaerobes and aerotolerant bacteria. The microbial communities are highly variable in particular individuals and compose of about 140 distinct families. The bronchial tree for instance contains a mean of 2000 bacterial genomes per cm2 surface. The harmful or potentially harmful bacteria are also detected routinely in respiratory specimens. The most significant are Moraxella catarrhalis, Haemophilus influenzae, and Streptococcus pneumoniae. They are known to cause respiratory disorders under particular conditions namely if the human immune system is impaired. The mechanism by which they persist in the lower airways in healthy individuals is unknown.
Bifidobacterium bifidum is a bacterial species of the genus Bifidobacterium. B. bifidum is one of the most common probiotic bacteria that can be found in the body of mammals, including humans.
Microbiota-accessible carbohydrates (MACs) are carbohydrates that are resistant to digestion by a host's metabolism, and are made available for gut microbes, as prebiotics, to ferment or metabolize into beneficial compounds, such as short chain fatty acids. The term, ‘‘microbiota-accessible carbohydrate’’ contributes to a conceptual framework for investigating and discussing the amount of metabolic activity that a specific food or carbohydrate can contribute to a host's microbiota.
Human milk oligosaccharides (HMOs), also known as human milk glycans, are short polymers of simple sugars that can be found in high concentrations in human breast milk. Human milk oligosaccharides promote the development of the immune system, can reduce the risk of pathogen infections and improve brain development and cognition. The HMO profile of human breast milk shapes the gut microbiota of the infant by selectively stimulating bifidobacteria and other bacteria.
The intestinal mucosal barrier, also referred to as intestinal barrier, refers to the property of the intestinal mucosa that ensures adequate containment of undesirable luminal contents within the intestine while preserving the ability to absorb nutrients. The separation it provides between the body and the gut prevents the uncontrolled translocation of luminal contents into the body proper. Its role in protecting the mucosal tissues and circulatory system from exposure to pro-inflammatory molecules, such as microorganisms, toxins, and antigens is vital for the maintenance of health and well-being. Intestinal mucosal barrier dysfunction has been implicated in numerous health conditions such as: food allergies, microbial infections, irritable bowel syndrome, inflammatory bowel disease, celiac disease, metabolic syndrome, non-alcoholic fatty liver disease, diabetes, and septic shock.
Milk fat globule membrane (MFGM) is a complex and unique structure composed primarily of lipids and proteins that surrounds milk fat globule secreted from the milk producing cells of humans and other mammals. It is a source of multiple bioactive compounds, including phospholipids, glycolipids, glycoproteins, and carbohydrates that have important functional roles within the brain and gut.
The human milk microbiota, also known as human milk probiotics (HMP), encompasses the microbiota–the community of microorganisms–present within the human mammary glands and breast milk. Contrary to the traditional belief that human breast milk is sterile, advancements in both microbial culture and culture-independent methods have confirmed that human milk harbors diverse communities of bacteria. These communities are distinct in composition from other microbial populations found within the human body which constitute the human microbiome.
Bacteroides thetaiotaomicron is a Gram-negative, obligate anaerobic bacterium and a prominent member of the human gut microbiota, particularly within the large intestine. B. thetaiotaomicron belongs to the Bacteroides genus – a group that is known for its role in the complex microbial community of the gut microbiota. Its proteome, consisting of 4,779 members, includes a system for obtaining and breaking down dietary polysaccharides that would otherwise be difficult to digest for the human body.
Human milk immunity is the protection provided to the immune system of an infant via the biologically active components in human milk. Human milk was previously thought to only provide passive immunity primarily through Secretory IgA, but advances in technology have led to the identification of various immune-modulating components. Human milk constituents provide nutrition and protect the immunologically naive infant as well as regulate the infant's own immune development and growth.
Breast milk-mediated drug delivery refers to the use of breast milk to transport a pharmaceutical compound, protein, or other treatment to achieve a desired effect. Delivery of these substances via milk provides an oral alternative for transport of a compound to the gut, specifically in infants. Breast milk-mediated drug delivery provides a way for pharmaceuticals and proteins to travel through the gastrointestinal system of an infant while minimizing the potential for irritation within gastrointestinal tissue.