Miller process

Last updated

The Miller process is an industrial-scale chemical procedure used to refine gold to a high degree of purity (99.5%). It was patented by Francis Bowyer Miller in 1867. This chemical process involves blowing chlorine gas through molten, but (slightly) impure, gold. Nearly all metal contaminants react to form chlorides but gold does not at these high temperatures. The other metals volatilize or form a low density slag on top of the molten gold. [1] [2] [3]

When all impurities have been removed from the gold (observable by a change in flame color) the gold is removed and processed in the manner required for sale or use. The resulting gold is 99.5% pure, but of lower purity than gold produced by the other common refining method, the Wohlwill process, which produces gold of up to 99.999% purity. [1] [2]

The Wohlwill process is commonly used for producing high-purity gold, such as in electronics work, where exacting standards of purity are required. When highest purity gold is not required, refiners use the Miller process due to its relative ease, quicker turnaround times, and because it does not tie up the large amount of gold in the form of chloroauric acid which the Wohlwill process permanently requires for the electrolyte. [1] [2]

See also

Related Research Articles

<span class="mw-page-title-main">Gold</span> Chemical element, symbol Au and atomic number 79

Gold is a chemical element; it has symbol Au and atomic number 79. In pure form, it is a bright, slightly orange-yellow, dense, soft, malleable, and ductile metal. Chemically, gold is a transition metal, a group 11 element, and one of the noble metals. It is one of the least reactive chemical elements and is solid under standard conditions.

<span class="mw-page-title-main">Aqua regia</span> Mixture of nitric acid and hydrochloric acid in a 1:3 molar ratio

Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was named by alchemists because it can dissolve the noble metals gold and platinum, though not all metals.

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

<span class="mw-page-title-main">Chalcopyrite</span> Copper iron sulfide mineral

Chalcopyrite ( KAL-kə-PY-ryte, -⁠koh-) is a copper iron sulfide mineral and the most abundant copper ore mineral. It has the chemical formula CuFeS2 and crystallizes in the tetragonal system. It has a brassy to golden yellow color and a hardness of 3.5 to 4 on the Mohs scale. Its streak is diagnostic as green-tinged black.

<span class="mw-page-title-main">Zone melting</span> Purification process by moving a molten zone along a metal bar

Zone melting is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by John Desmond Bernal and further developed by William G. Pfann in Bell Labs as a method to prepare high-purity materials, mainly semiconductors, for manufacturing transistors. Its first commercial use was in germanium, refined to one atom of impurity per ten billion, but the process can be extended to virtually any solute–solvent system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.

The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) in molten cryolite, and electrolyzing the molten salt bath, typically in a purpose-built cell. The Hall–Héroult process applied at industrial scale happens at 940–980 °C and produces 99.5–99.8% pure aluminium. Recycled aluminum requires no electrolysis, thus it does not end up in this process.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

<span class="mw-page-title-main">Ingot</span> Piece of relatively pure metal

An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of shaping, such as cold/hot working, cutting, or milling to produce a useful final product. Non-metallic and semiconductor materials prepared in bulk form may also be referred to as ingots, particularly when cast by mold based methods. Precious metal ingots can be used as currency, or as a currency reserve, as with gold bars.

<span class="mw-page-title-main">Basic oxygen steelmaking</span> Steelmaking method

Basic oxygen steelmaking, also known as Linz-Donawitz steelmaking or the oxygen converter process, is a method of primary steelmaking in which carbon-rich molten pig iron is made into steel. Blowing oxygen through molten pig iron lowers the carbon content of the alloy and changes it into low-carbon steel. The process is known as basic because fluxes of burnt lime or dolomite, which are chemical bases, are added to promote the removal of impurities and protect the lining of the converter.

The Betterton-Kroll Process is a pyrometallurgical process for refining lead from lead bullion. Developed by William Justin Kroll in 1922, the Betterton–Kroll process is one of the final steps in conventional lead smelting. After gold, copper, and silver are removed from the lead, significant amounts of bismuth and antimony remain. The Betterton–Kroll process is used to remove these impurities. In the process, calcium and magnesium are added to the molten lead at temperatures around 380 °C. The calcium and magnesium react with the bismuth and antimony in the bullion to form alloys with a higher melting point, which then can be skimmed off of the surface. This process leaves behind lead with less than 0.01 percent bismuth by weight. The process is crucial to cheap industrial lead smelting and offers significant advantages over more expensive processes like the Betts Electrolytic process and fractional crystallization.

<span class="mw-page-title-main">Gold extraction</span> Process of extracting gold from ore

Gold extraction is the extraction of gold from dilute ores using a combination of chemical processes. Gold mining produces about 3600 tons annually, and another 300 tons is produced from recycling.

<span class="mw-page-title-main">Electrowinning</span> Electrolytic extraction process

Electrowinning, also called electroextraction, is the electrodeposition of metals from their ores that have been put in solution via a process commonly referred to as leaching. Electrorefining uses a similar process to remove impurities from a metal. Both processes use electroplating on a large scale and are important techniques for the economical and straightforward purification of non-ferrous metals. The resulting metals are said to be electrowon.

<span class="mw-page-title-main">Puddling (metallurgy)</span> Step in the manufacture of iron

Puddling is the process of converting pig iron to bar (wrought) iron in a coal fired reverberatory furnace. It was developed in England during the 1780s. The molten pig iron was stirred in a reverberatory furnace, in an oxidizing environment to burn the carbon, resulting in wrought iron. It was one of the most important processes for making the first appreciable volumes of valuable and useful bar iron without the use of charcoal. Eventually, the furnace would be used to make small quantities of specialty steels.

<span class="mw-page-title-main">Foundry</span> Factory that produces metal castings

A foundry is a factory that produces metal castings. Metals are cast into shapes by melting them into a liquid, pouring the metal into a mold, and removing the mold material after the metal has solidified as it cools. The most common metals processed are aluminum and cast iron. However, other metals, such as bronze, brass, steel, magnesium, and zinc, are also used to produce castings in foundries. In this process, parts of desired shapes and sizes can be formed.

The Wohlwill process is an industrial-scale chemical procedure used to refine gold to the highest degree of purity (99.999%). The process was invented in 1874 by Emil Wohlwill. This electrochemical process involves using a cast gold ingot, often called a doré bar, of 95%+ gold to serve as an anode. Lower percentages of gold in the anode will interfere with the reaction, especially when the contaminating metal is silver or one of the platinum group elements. The cathodes for this reaction are small sheets of pure (24k) gold sheeting or stainless steel. Current is applied to the system, and electricity travels through the electrolyte of chloroauric acid. Gold and other metals are dissolved at the anode, and pure gold is plated onto the gold cathode. When the anode is dissolved, the cathode is removed and melted or otherwise processed in the manner required for sale or use. The resulting gold is 99.999% pure, and of higher purity than gold produced by the other common refining method, the Miller process, which produces gold of 99.5% purity.

In metallurgy, refining consists of purifying an impure metal. It is to be distinguished from other processes such as smelting and calcining in that those two involve a chemical change to the raw material, whereas in refining, the final material is usually identical chemically to the original one, only it is purer. The processes used are of many types, including pyrometallurgical and hydrometallurgical techniques.

<span class="mw-page-title-main">Exothermic welding</span> Using pyrotechnic metal to join two metal pieces together

Exothermic welding, also known as exothermic bonding, thermite welding (TW), and thermit welding, is a welding process that employs molten metal to permanently join the conductors. The process employs an exothermic reaction of a thermite composition to heat the metal, and requires no external source of heat or current. The chemical reaction that produces the heat is an aluminothermic reaction between aluminium powder and a metal oxide.

Gold parting is the separating of gold from silver. Gold and silver are often extracted from the same ores and are chemically similar and therefore difficult to separate. The alloy of gold and silver is called electrum.

<span class="mw-page-title-main">Bottom-blown oxygen converter</span> Smelting furnace

The Bottom-blown Oxygen Converter or BBOC is a smelting furnace developed by the staff at Britannia Refined Metals Limited (“BRM”), a British subsidiary of MIM Holdings Limited. The furnace is currently marketed by Glencore Technology. It is a sealed, flat-bottomed furnace mounted on a tilting frame that is used in the recovery of precious metals. A key feature is the use of a shrouded lance to inject oxygen through the bottom of the furnace, directly into the precious metals contained in the furnace, to oxidize base metals or other impurities as part of their removal as slag.

Electrolytic iron is a form of high purity iron, obtained by electrolysis. It has a high purity greater than 99.95% with trace elements accounting for only a millionth of a decimal.

References

  1. 1 2 3 Noyes, Robert (1993). Pollution prevention technology handbook. William Andrew. p. 342. ISBN   0-8155-1311-9.
  2. 1 2 3 Pletcher, Derek & Walsh, Frank (1990). Industrial electrochemistry. Springer. p. 244. ISBN   0-412-30410-4.
  3. Renner, Hermann; Schlamp, Günther; Hollmann, Dieter; Lüschow, Hans Martin; Tews, Peter; Rothaut, Josef; Dermann, Klaus; Knödler, Alfons; Hecht, Christian; Schlott, Martin; Drieselmann, Ralf; Peter, Catrin; Schiele, Rainer (2000). "Gold, Gold Alloys, and Gold Compounds". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a12_499. ISBN   3527306730.