Minimal volume

Last updated

In mathematics, in particular in differential geometry, the minimal volume is a number that describes one aspect of a smooth manifold's topology. This diffeomorphism invariant was introduced by Mikhael Gromov.

Given a smooth Riemannian manifold (M, g), one may consider its volume vol(M, g) and sectional curvature Kg. The minimal volume of a smooth manifold M is defined to be:

Any closed manifold can be given an arbitrarily small volume by scaling any choice of a Riemannian metric. The minimal volume removes the possibility of such scaling by the constraint on sectional curvatures. So, if the minimal volume of M is zero, then a certain kind of nontrivial collapsing phenomena can be exhibited by Riemannian metrics on M. A trivial example, the only in which the possibility of scaling is present, is a closed flat manifold. The Berger spheres show that the minimal volume of the three-dimensional sphere is also zero. Gromov has conjectured that every closed simply connected odd-dimensional manifold has zero minimal volume.

By contrast, a positive lower bound for the minimal volume of M amounts to some (usually nontrivial) geometric inequality for the volume of an arbitrary complete Riemannian metric on M in terms of the size of its curvature. According to the Gauss-Bonnet theorem, if M is a closed and connected two-dimensional manifold, then MinVol(M) = 2π|χ(M)|. The infimum in the definition of minimal volume is realized by the metrics appearing from the uniformization theorem. More generally, according to the Chern-Gauss-Bonnet formula, if M is a closed and connected manifold then:

Gromov, in 1982, showed that the volume of a complete Riemannian metric on a smooth manifold can always be estimated by the size of its curvature and by the simplicial volume of the manifold, via the inequality:

Related Research Articles

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Differential geometry theorem

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

In mathematics, the Chern theorem states that the Euler–Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

Myers's theorem, also known as the Bonnet–Myers theorem, is a celebrated, fundamental theorem in the mathematical field of Riemannian geometry. It was discovered by Sumner Byron Myers in 1941. It asserts the following:

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry.

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3 dimensions, and by Prasad (1973) in all dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm. Besson, Courtois & Gallot (1996) gave the simplest available proof.

In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to Heinz Hopf.

<span class="mw-page-title-main">Pu's inequality</span>

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

In mathematics, in the field of differential geometry, the Yamabe invariant, also referred to as the sigma constant, is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H. Yamabe. Used by Vincent Moncrief and Arthur Fischer to study reduced Hamiltonian for Einstein's equations.

In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs.

The volume entropy is an asymptotic invariant of a compact Riemannian manifold that measures the exponential growth rate of the volume of metric balls in its universal cover. This concept is closely related with other notions of entropy found in dynamical systems and plays an important role in differential geometry and geometric group theory. If the manifold is nonpositively curved then its volume entropy coincides with the topological entropy of the geodesic flow. It is of considerable interest in differential geometry to find the Riemannian metric on a given smooth manifold which minimizes the volume entropy, with locally symmetric spaces forming a basic class of examples.

In Riemannian geometry, Schur's lemma is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.

In differential geometry the Hitchin–Thorpe inequality is a relation which restricts the topology of 4-manifolds that carry an Einstein metric.

In differential geometry, Cohn-Vossen's inequality, named after Stefan Cohn-Vossen, relates the integral of Gaussian curvature of a non-compact surface to the Euler characteristic. It is akin to the Gauss–Bonnet theorem for a compact surface.

Chern's conjecture for affinely flat manifolds was proposed by Shiing-Shen Chern in 1955 in the field of affine geometry. As of 2018, it remains an unsolved mathematical problem.

In mathematics, the Besicovitch inequality is a geometric inequality relating volume of a set and distances between certain subsets of its boundary. The inequality was first formulated by Abram Besicovitch.

References