Mir-744 microRNA precursor family

Last updated
mir-744
Identifiers
Symbolmir-744
Rfam RF00936
miRBase family MIPF0000431
Other data
RNA type microRNA
Domain(s) Eukaryota;
PDB structures PDBe

In molecular biology mir-744 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

Contents

miR-744 and cancer in mice

miR-744 plays a role in tumour development and growth in mouse cell lines. Its expression induces cyclin B1 expression, whilst knockdown sees a resultant decreased level of mouse cyclin B through the Ccnb1 gene. [1] Short-term overexpression of miR-744 in mouse cell lines has been seen to enhance cell proliferation, whilst chromosomal instability and in vivo suppression are concurrent with a prolonged expression.

TGF-β1 repression

Multiple miR-744 binding sites have been identified in the proximal 3' untranslated region of transforming growth factor beta 1 (TGF-β1). Direct targeting of TGF-β1 by miR-744 has been identified, and transfection is seen to inhibit endogenous TGF-β1 synthesis by directing post-transcriptional regulation. [2]

EEF1A2 repression

miR-744 directly targets translation elongation factor and known protooncogene EEF1A2. [3] mIR-744 also upregulates during resveratrol treatment of MCF7 breast cancer cells. [4]

See also

Related Research Articles

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

Cyclin E

Cyclin E is a member of the cyclin family.

RNA activation (RNAa) is a small RNA-guided and Argonaute (Ago)-dependent gene regulation phenomenon in which promoter-targeted short double-stranded RNAs (dsRNAs) induce target gene expression at the transcriptional/epigenetic level. RNAa was first reported in a 2006 PNAS paper by Li et al. who also coined the term "RNAa" as a contrast to RNA interference (RNAi) to describe such gene activation phenomenon. dsRNAs that trigger RNAa have been termed small activating RNA (saRNA). Since the initial discovery of RNAa in human cells, many other groups have made similar observations in different mammalian species including human, non-human primates, rat and mice, plant and C. elegans, suggesting that RNAa is an evolutionarily conserved mechanism of gene regulation.

mir-129 microRNA precursor family

The miR-129 microRNA precursor is a small non-coding RNA molecule that regulates gene expression. This microRNA was first experimentally characterised in mouse and homologues have since been discovered in several other species, such as humans, rats and zebrafish. The mature sequence is excised by the Dicer enzyme from the 5' arm of the hairpin. It was elucidated by Calin et al. that miR-129-1 is located in a fragile site region of the human genome near a specific site, FRA7H in chromosome 7q32, which is a site commonly deleted in many cancers. miR-129-2 is located in 11p11.2.

mir-133 microRNA precursor family

mir-133 is a type of non-coding RNA called a microRNA that was first experimentally characterised in mice. Homologues have since been discovered in several other species including invertebrates such as the fruitfly Drosophila melanogaster. Each species often encodes multiple microRNAs with identical or similar mature sequence. For example, in the human genome there are three known miR-133 genes: miR-133a-1, miR-133a-2 and miR-133b found on chromosomes 18, 20 and 6 respectively. The mature sequence is excised from the 3' arm of the hairpin. miR-133 is expressed in muscle tissue and appears to repress the expression of non-muscle genes.

mir-181 microRNA precursor

In molecular biology miR-181 microRNA precursor is a small non-coding RNA molecule. MicroRNAs (miRNAs) are transcribed as ~70 nucleotide precursors and subsequently processed by the RNase-III type enzyme Dicer to give a ~22 nucleotide mature product. In this case the mature sequence comes from the 5' arm of the precursor. They target and modulate protein expression by inhibiting translation and / or inducing degradation of target messenger RNAs. This new class of genes has recently been shown to play a central role in malignant transformation. miRNA are downregulated in many tumors and thus appear to function as tumor suppressor genes. The mature products miR-181a, miR-181b, miR-181c or miR-181d are thought to have regulatory roles at posttranscriptional level, through complementarity to target mRNAs. miR-181 which has been predicted or experimentally confirmed in a wide number of vertebrate species as rat, zebrafish, and in the pufferfish.

mir-199 microRNA precursor

The miR-199 microRNA precursor is a short non-coding RNA gene involved in gene regulation. miR-199 genes have now been predicted or experimentally confirmed in mouse, human and a further 21 other species. microRNAs are transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. The mature products are thought to have regulatory roles through complementarity to mRNA.

CD97

Cluster of differentiation 97 is a protein also known as BL-Ac[F2] encoded by the ADGRE5 gene. CD97 is a member of the adhesion G protein-coupled receptor (GPCR) family. Adhesion GPCRs are characterized by an extended extracellular region often possessing N-terminal protein modules that is linked to a TM7 region via a domain known as the GPCR-Autoproteolysis INducing (GAIN) domain.

EEF1A2

Elongation factor 1-alpha 2 is a protein that in humans is encoded by the EEF1A2 gene.

mir-137

In molecular biology, miR-137 is a short non-coding RNA molecule that functions to regulate the expression levels of other genes by various mechanisms. miR-137 is located on human chromosome 1p22 and has been implicated to act as a tumor suppressor in several cancer types including colorectal cancer, squamous cell carcinoma and melanoma via cell cycle control.

mir-200

In molecular biology, the miR-200 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by binding and cleaving mRNAs or inhibiting translation. The miR-200 family contains miR-200a, miR-200b, miR-200c, miR-141, and miR-429. There is growing evidence to suggest that miR-200 microRNAs are involved in cancer metastasis.

mir-22

In molecular biology mir-22 microRNA is a short RNA molecule. MicroRNAs are an abundant class of molecules, approximately 22 nucleotides in length, which can post-transcriptionally regulate gene expression by binding to the 3' UTR of mRNAs expressed in a cell.

mir-223

In molecular biology MicroRNA-223 (miR-223) is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms. miR-223 is a hematopoietic specific microRNA with crucial functions in myeloid lineage development. It plays an essential role in promoting granulocytic differentiation while also being associated with the suppression of erythrocytic differentiation. miR-223 is commonly repressed in hepatocellular carcinoma and leukemia. Higher expression levels of miRNA-223 are associated with extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue of the stomach and recurrent ovarian cancer. In some cancers the microRNA-223 down-regulation is correlated with higher tumor burden, disease aggressiveness, and poor prognostic factors. MicroRNA-223 is also associated with rheumatoid arthritis, sepsis, type 2 diabetes, and hepatic ischemia.

miR-138

miR-138 is a family of microRNA precursors found in animals, including humans. MicroRNAs are typically transcribed as ~70 nucleotide precursors and subsequently processed by the Dicer enzyme to give a ~22 nucleotide product. The excised region or, mature product, of the miR-138 precursor is the microRNA mir-138.

miR-224

miR-224 is a family of microRNA precursors found in mammals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer.

In molecular biology mir-383 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

In molecular biology mir-652 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms, with expression levels of miRNAs and respective target mRNAs negatively correlated.

In molecular biology mir-663 microRNA is a short RNA molecule. MicroRNAs function to regulate the expression levels of other genes by several mechanisms.

MIR503

MicroRNA 503 is a non-coding RNA molecule that in humans is encoded by the MIR503 gene.

References

  1. Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, et al. (2012). "Upregulation of Cyclin B1 by miRNA and its implications in cancer". Nucleic Acids Res. 40 (4): 1695–707. doi:10.1093/nar/gkr934. PMC   3287204 . PMID   22053081.
  2. Martin J, Jenkins RH, Bennagi R, Krupa A, Phillips AO, Bowen T, et al. (2011). "Post-transcriptional regulation of Transforming Growth Factor Beta-1 by microRNA-744". PLOS ONE. 6 (10): e25044. Bibcode:2011PLoSO...625044M. doi: 10.1371/journal.pone.0025044 . PMC   3186795 . PMID   21991303.
  3. Vislovukh, A; Kratassiouk, G; Porto, E; Gralievska, N; Beldiman, C; Pinna, G; El'skaya, A; Harel-Bellan, A; Negrutskii, B; Groisman, I (11 June 2013). "Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744". British Journal of Cancer. 108 (11): 2304–11. doi:10.1038/bjc.2013.243. PMC   3681015 . PMID   23695020.
  4. Vislovukh, A; Kratassiouk, G; Porto, E; Gralievska, N; Beldiman, C; Pinna, G; El'skaya, A; Harel-Bellan, A; Negrutskii, B; Groisman, I (11 June 2013). "Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744". British Journal of Cancer. 108 (11): 2304–11. doi:10.1038/bjc.2013.243. PMC   3681015 . PMID   23695020.

Further reading