Company type | Corporation |
---|---|
Industry | Test and measurement |
Founded | 2018 |
Founder | Morten Hundt, PhD Oleg Aseev, PhD |
Headquarters | Zurich, Switzerland |
Products | MGA Multi-compound Gas Analyzers, Isotopic analyzers |
Website | miro-analytical.com |
MIRO Analytical is a Swiss manufacturer of laser-based gas analyzers and isotope analyzers.
The company is based in Zurich, Switzerland and was founded 2018. [1]
MIRO Analytical is a spin-off of Empa, [2] a Swiss research institute of the ETH domain. It has know-how in laser spectroscopy and in particular, in the combination of several quantum-cascade lasers (QCLs) into compact laser-based gas analyzers. [3]
The company's first instrument was a nine gas analyzer MGA-9 in 2018. By 2019 the MGA-10 a ten gas analyzer was introduced which measures greenhouse gases and air pollutants. [4] [5]
The gas analyzers directly measure concentrations of multiple gas species using mid-infrared laser absorption spectroscopy with QCLs as light sources. This allows for highly specific and accurate gas detection along with maximum measurement sensitivity. [6]
Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separation isolates analytes. Qualitative analysis identifies analytes, while quantitative analysis determines the numerical amount or concentration.
Infrared spectroscopy is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance on the vertical axis vs. frequency, wavenumber or wavelength on the horizontal axis. Typical units of wavenumber used in IR spectra are reciprocal centimeters, with the symbol cm−1. Units of IR wavelength are commonly given in micrometers, symbol μm, which are related to the wavenumber in a reciprocal way. A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer. Two-dimensional IR is also possible as discussed below.
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum.
Raman spectroscopy is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.
Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.
Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum. Typical applications include medical and physiological diagnostics and research including blood sugar, pulse oximetry, functional neuroimaging, sports medicine, elite sports training, ergonomics, rehabilitation, neonatal research, brain computer interface, urology, and neurology. There are also applications in other areas as well such as pharmaceutical, food and agrochemical quality control, atmospheric chemistry, combustion research and knowledge.
Photoacoustic spectroscopy is the measurement of the effect of absorbed electromagnetic energy on matter by means of acoustic detection. The discovery of the photoacoustic effect dates to 1880 when Alexander Graham Bell showed that thin discs emitted sound when exposed to a beam of sunlight that was rapidly interrupted with a rotating slotted disk. The absorbed energy from the light causes local heating, generating a thermal expansion which creates a pressure wave or sound. Later Bell showed that materials exposed to the non-visible portions of the solar spectrum can also produce sounds.
Infrared multiple photon dissociation (IRMPD) is a technique used in mass spectrometry to fragment molecules in the gas phase usually for structural analysis of the original (parent) molecule.
Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho at Bell Laboratories in 1994.
A carbon dioxide sensor or CO2 sensor is an instrument for the measurement of carbon dioxide gas. The most common principles for CO2 sensors are infrared gas sensors (NDIR) and chemical gas sensors. Measuring carbon dioxide is important in monitoring indoor air quality, the function of the lungs in the form of a capnograph device, and many industrial processes.
A nondispersive infrared sensor is a simple spectroscopic sensor often used as a gas detector. It is non-dispersive in the fact that no dispersive element is used to separate out the broadband light into a narrow spectrum suitable for gas sensing. The majority of NDIR sensors use a broadband lamp source and an optical filter to select a narrow band spectral region that overlaps with the absorption region of the gas of interest. In this context narrow may be 50-300nm bandwidth. Modern NDIR sensors may use Microelectromechanical systems (MEMs) or mid IR LED sources, with or without an optical filter.
Endress+Hauser Optical Analysis, Inc. is a manufacturer of optical-based gas sensors for the industrial process, environmental monitoring and clean technology markets. The company's sensors measure the absorption of laser light at specific wavelengths to detect carbon dioxide and water vapor in industrial process control and environmental monitoring applications. Such applications include non-contact measurement of moisture, carbon dioxide, and other corrosives in the energy industry, petrochemical industry, arsenic and other impurities in drinking water (Water Quality), and airborne water vapor and other atmospheric measurements from commercial aircraft for the U.S. and International Weather Services (Atmospheric). Clean tech applications include identifying and harvesting methane (CH4) as a clean energy source, as well as mounting sensors on commercial airliners to enable real-time monitoring of weather conditions to avoid commercial flight delays totaling $1 billion per year in wasted time and fuel.
Moisture analysis covers a variety of methods for measuring the moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport. Moisture content measurements can be reported in multiple units, such as: parts per million, pounds of water per million standard cubic feet of gas, mass of water vapor per unit volume or mass of water vapor per unit mass of dry gas.
Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.
Instrumental analysis is a field of analytical chemistry that investigates analytes using scientific instruments.
This is a list of infrared topics.
AFM-IR or infrared nanospectroscopy is one of a family of techniques that are derived from a combination of two parent instrumental techniques. AFM-IR combines the chemical analysis power of infrared spectroscopy and the high-spatial resolution of scanning probe microscopy (SPM). The term was first used to denote a method that combined a tuneable free electron laser with an atomic force microscope equipped with a sharp probe that measured the local absorption of infrared light by a sample with nanoscale spatial resolution.
IRsweep is a Swiss company offering optical spectroscopy solutions and multipass absorption cells.
Gasera Ltd. is a Finnish high-tech company focused on the analysis of gases, liquids and solid materials. The main focus of Gasera is measuring harmful air pollutants in order to protect humans and the environment. Other applications include e.g. greenhouse gas monitoring, automotive and ship emissions monitoring, dissolved gas analysis in transformer oil, CWA and TIC detection, material identification and food production and safety.
Alpes Lasers S.A. is a Swiss engineering company and manufacturer of Infrared lasers and electrical drivers based in St-Blaise, Canton of Neuchâtel. The company was the first to commercialize the quantum-cascade laser (QCL) for scientific, industrial and medical use. The company has also developed QCLs for defensive countermeasure applications for the United States Air Force.