Mobile Studio

Last updated
RED2-final-640x480.jpg

The National Science Foundation supported Mobile Studio Project, or Mobile Studio, is developing pedagogy and hardware/software which, when connected to a PC (via USB), provides functionality similar to that of laboratory equipment (scope, function generator, power supplies, DMM, etc.) typically associated with an instrumented studio classroom. [1] The Mobile Studio IOBoard is a small, inexpensive hardware platform for use in a home, classroom or remote environment. When coupled with the Mobile Studio Desktop software, the system duplicates a large amount of the hardware often used to teach Electrical Engineering, Computer Engineering, Control Systems, and Physics courses; among others. [2] With the support of several technology companies (ADI, [3] HP, and Maxim) and the National Science Foundation, the Mobile Studio Project is now being utilized to enhance science, math, engineering and technology education around the world. The project's goal is to enable hands-on exploration of science and engineering principles, devices, and systems that have historically been restricted to expensive laboratory facilities.

Contents

History

Beginnings

In 1999, Rensselaer Polytechnic Institute professor Don Millard started thinking about a way to enable students to perform experiments whenever and wherever they desire — experiments that use an oscilloscope, function generator, digital control and some form of power supply. The project started by looking at commercially available solutions; which were found to be prohibitively expensive since the desire was to keep the cost of the solution similar to the price of an engineering textbook.

Motivation

The Academy of Electronic Media Mobile Studio Project's inspiration was drawn from a generation of engineering students that has virtually no tinkering background. Instead of taking apart devices and building things with erector sets, students now manipulate computer software. Additionally, the level of integration is so sophisticated in today’s electronics that even if students did crack them open, it’s not clear how much they would garner from it. Simple circuit boards that stimulated the imagination with their discrete components and space for soldering and tinkering - have since given way to multilayered boards with complex ICs and circuitry too small to see.

The Mobile Studio IOBoard

Hardware

The hardware component of the system is a small printed circuit board, referred to as the IOBoard, which was developed by Jason Coutermarsh (as a part of his Rensselaer degree programs) and Dr. Don Lewis Millard. The IOBoard is populated with the components required to implement an oscilloscope, function generator, spectrum analyzer, voltmeter, and digital input/output control. The hardware connects to a PC via USB, and is powered by the user's PC, eliminating the need for a bulky AC transformer.

Software

The Mobile Studio Desktop software, designed by Jason Coutermarsh, provides the user with "benchtop equivalent" displays that mimic their physical counterparts. In addition to providing standard instrumentation options, the software takes advantage of the processing power of the personal computer, giving the user access to features typically found on high-end equipment, along with the ability to easily save data and screen images.

Expandability

The Mobile Studio IOBoard is easily expandable using an on-board daughterboard connector. Nearly all the IOBoard resources can be accessed by a daughterboard, allowing a user to enhance current features or add completely new options. The Mobile Studio Desktop application software is also easily expandable by way of a "Plug-in" system. The software automatically finds and loads both new hardware drivers and new features that can be installed at any time after the main application. This ensures that both the hardware and software are never out of date.

Participants

Academic

Industry

See also

Related Research Articles

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

<span class="mw-page-title-main">Sound card</span> Expansion card that provides input and output of audio signals

A sound card is an internal expansion card that provides input and output of audio signals to and from a computer under the control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use today. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

<span class="mw-page-title-main">Electronic test equipment</span>

Electronic test equipment is used to create signals and capture responses from electronic devices under test (DUTs). In this way, the proper operation of the DUT can be proven or faults in the device can be traced. Use of electronic test equipment is essential to any serious work on electronics systems.

<span class="mw-page-title-main">Mobile computing</span> Human–computer interaction in which a computer is expected to be transported during normal usage

Mobile computing is human–computer interaction in which a computer is expected to be transported during normal usage, which allows for the transmission of data, voice, and video. Mobile computing involves mobile communication, mobile hardware, and mobile software. Communication issues include ad hoc networks and infrastructure networks as well as communication properties, protocols, data formats, and concrete technologies. Hardware includes mobile devices or device components. Mobile software deals with the characteristics and requirements of mobile applications.

An output device is any piece of computer hardware equipment which converts information into a human-perceptible form or, historically, into a physical machine-readable form for use with other non-computerized equipment. It can be text, graphics, tactile, audio, or video. Examples include monitors, printers, speakers, headphones, projectors, GPS devices, optical mark readers, and braille readers.

<span class="mw-page-title-main">Universal Software Radio Peripheral</span> Product family of software-defined radios

Universal Software Radio Peripheral (USRP) is a range of software-defined radios designed and sold by Ettus Research and its parent company, National Instruments. Developed by a team led by Matt Ettus, the USRP product family is commonly used by research labs, universities, and hobbyists.

<span class="mw-page-title-main">VoIP phone</span> Phone using one or more VoIP technologies

A VoIP phone or IP phone uses voice over IP technologies for placing and transmitting telephone calls over an IP network, such as the Internet. This is in contrast to a standard phone which uses the traditional public switched telephone network (PSTN).

<span class="mw-page-title-main">OrCAD</span> Electronic design automation software

OrCAD Systems Corporation was a software company that made OrCAD, a proprietary software tool suite used primarily for electronic design automation (EDA). The software is used mainly by electronic design engineers and electronic technicians to create electronic schematics, perform mixed-signal simulation and electronic prints for manufacturing printed circuit boards (PCBs). OrCAD was taken over by Cadence Design Systems in 1999 and was integrated with Cadence Allegro since 2005.

A guard tour patrol system is a system for logging the rounds of employees in a variety of situations such as security guards patrolling property, technicians monitoring climate-controlled environments, and correctional officers checking prisoner living areas. It helps ensure that the employee makes their appointed rounds at the correct intervals and can offer a record for legal or insurance reasons. Such systems have existed for many years using mechanical watchclock-based systems. Computerized systems were first introduced in Europe in the early 1980s, and in North America in 1986. Modern systems are based on handheld data loggers and RFID sensors. The system provides a means to record the time when the employee reaches certain points on their tour. Checkpoints or watchstations are commonly placed at the extreme ends of the tour route and at critical points such as vaults, specimen refrigerators, vital equipment, and access points. Some systems are set so that the interval between stations is timed so if the employee fails to reach each point within a set time, other staff are dispatched to ensure the employee's well-being. An example of a modern set-up might work as follows: the employee carries a portable electronic sensor (PES) or electronic data collector which is activated at each checkpoint. Checkpoints can consist of iButton semiconductors, magnetic strips, proximity microchips such as RFIDs or NFC- or optical barcodes. The data collector stores the serial number of the checkpoint with the date and time. Later, the information is downloaded from the collector into a computer where the checkpoint's serial number will have an assigned location. Data collectors can also be programmed to ignore duplicate checkpoint activations that occur sequentially or within a certain time period. Computer software used to compile the data from the collector can print out summaries that pinpoint missed checkpoints or patrols without the operator having to review all the data collected. Because devices can be subject to misuse, some have built-in microwave, g-force, and voltage detection.

Don Millard is a Program Director at the National Science Foundation (NSF). Prior to joining NSF, he was a faculty member at Rensselaer Polytechnic Institute and the originator of the Mobile Studio Project. In 1999 he started thinking about a way to enable students to perform experiments anytime, anyplace—specifically those that use an oscilloscope, function generator, digital control, and some form of power supply. He started the Mobile Studio project by looking at commercially available solutions, which were prohibitively expensive; while choosing to involve students in bringing the project’s vision to reality. Jason Coutermarsh, then a student at Rensselaer Polytechnic Institute (RPI), joined the project in the summer of 2004 and they developed a complete functional input/output board (IOBoard) hardware/software prototype. With the support of several technology companies and the National Science Foundation, the Mobile Studio Project is now being utilized to enhance science, math, engineering and technology education around the world.

<span class="mw-page-title-main">Personal computer</span> Computer intended for use by an individual person

A personal computer (PC) is a multi-purpose microcomputer whose size, capabilities, and price make it feasible for individual use. Personal computers are intended to be operated directly by an end user, rather than by a computer expert or technician. Unlike large, costly minicomputers and mainframes, time-sharing by many people at the same time is not used with personal computers. Primarily in the late 1970s and 1980s, the term home computer was also used.

A digital pattern generator is a piece of electronic test equipment or software used to generate digital electronic stimuli. Digital electronics stimuli are a specific kind of electrical waveform varying between two conventional voltages that correspond to two logic states. The main purpose of a digital pattern generator is to stimulate the inputs of a digital electronic device. For that reason, the voltage levels generated by a digital pattern generator are often compatible with digital electronics I/O standards – TTL, LVTTL, LVCMOS and LVDS, for instance.

LinuxCNC is a free, open-source Linux software system that implements numerical control capability using general purpose computers to control CNC machines. Designed by various volunteer developers at linuxcnc.org, it is typically bundled as an ISO file with a modified version of 32-bit Ubuntu Linux which provides the required real-time kernel.

<span class="mw-page-title-main">Hacking of consumer electronics</span>

The hacking of consumer electronics is an increasingly common practice which users perform in order to customize and modify their devices beyond what is typically possible. This activity has a long history, dating from the days of early computer, programming, and electronics hobbyists.

<span class="mw-page-title-main">Digital storage oscilloscope</span> Oscilloscope that stores and analyses signals digitally

A digital storage oscilloscope (DSO) is an oscilloscope which stores and analyses the input signal digitally rather than using analog techniques. It is now the most common type of oscilloscope in use because of the advanced trigger, storage, display and measurement features which it typically provides.

<span class="mw-page-title-main">CompactDAQ</span>

CompactDAQ is a data acquisition platform built by National Instruments that includes a broad set of compatible hardware and software. CompactDAQ integrates hardware for data I/O with LabVIEW software to enable engineers to collect, process and analyse sensor data. CompactDAQ systems are less expensive than equivalent systems within the NI PXI Platform.

<span class="mw-page-title-main">Pico Technology</span>

Pico Technology is a British manufacturer of high-precision PC-based oscilloscopes and automotive diagnostics equipment, founded in 1991. Their product range includes the PicoScope line of PC-based oscilloscopes, data loggers, automotive equipment, and most recently, handheld USB-based oscilloscopes. Since their inception in 1991, Pico Tech has been researching and developing PC-based oscilloscopes, when the market standard was analogue storage oscilloscopes. Pico Technology is one of two European scope manufacturers, and competes in the low to middle end of the instrumentation market.

<span class="mw-page-title-main">PicoScope (software)</span>

PicoScope is computer software for real-time signal acquisition of Pico Technology oscilloscopes. PicoScope is supported on Microsoft Windows, Mac OS X, Debian and Ubuntu platforms. PicoScope is primarily used to view and analyze real-time signals from PicoScope oscilloscopes and data loggers. PicoScope software enables analysis using FFT, a spectrum analyser, voltage-based triggers, and the ability to save/load waveforms to disk. PicoScope is compatible with parallel port oscilloscopes and the newer USB oscilloscopes.

<span class="mw-page-title-main">Hardware backdoor</span> Hardware or firmware of computer chips

Hardware backdoors are backdoors in hardware, such as code inside hardware or firmware of computer chips. The backdoors may be directly implemented as hardware Trojans in the integrated circuit.

References