Mode-k flattening

Last updated
Flattening a (3rd-order) tensor. The tensor can be flattened in three ways to obtain matrices comprising its mode-0, mode-1, and mode-2 vectors. Flatten3 new w i0 6.png
Flattening a (3rd-order) tensor. The tensor can be flattened in three ways to obtain matrices comprising its mode-0, mode-1, and mode-2 vectors.

In multilinear algebra, mode-m flattening [1] [2] [3] , also known as matrixizing, matricizing, or unfolding, [4] is an operation that reshapes a multi-way array into a matrix denoted by (a two-way array).

Contents

Matrixizing may be regarded as a generalization of the mathematical concept of vectorizing.

Definition

The mode-m matrixizing of tensor is defined as the matrix . As the parenthetical ordering indicates, the mode-m column vectors are arranged by sweeping all the other mode indices through their ranges, with smaller mode indexes varying more rapidly than larger ones; thus [1]

where and

By comparison, the matrix that results from an unfolding [4] has columns that are the result of sweeping through all the modes in a circular manner beginning with mode m + 1 as seen in the parenthetical ordering. This is an inefficient way to matrixize.[ citation needed ]

Applications

This operation is used in tensor algebra and its methods, such as Parafac and HOSVD.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Exterior algebra</span> Algebra of a vector space

In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogs. The exterior product of two vectors u and v, denoted by uv, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of uv can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that uv = −(vu) for all vectors u and v, but, unlike the cross product, the exterior product is associative. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area and orientation, which is a choice of rotational direction within the plane (clockwise or counterclockwise from some view).

In mathematics, the modern component-free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of multilinear concept. Their properties can be derived from their definitions, as linear maps or more generally; and the rules for manipulations of tensors arise as an extension of linear algebra to multilinear algebra.

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

<span class="mw-page-title-main">Blowing up</span>

In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with the space of all directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the projectivized tangent space at that point. The metaphor is that of zooming in on a photograph to enlarge part of the picture, rather than referring to an explosion.

In statistical mechanics, the Temperley–Lieb algebra is an algebra from which are built certain transfer matrices, invented by Neville Temperley and Elliott Lieb. It is also related to integrable models, knot theory and the braid group, quantum groups and subfactors of von Neumann algebras.

In linear algebra, if are complex matrices for some nonnegative integer , and , then the matrix pencil of degree is the matrix-valued function defined on the complex numbers

In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form

In multilinear algebra, the tensor rank decomposition or the decomposition of a tensor is the decomposition of a tensor in terms of a sum of minimum tensors. This is an open problem.

In multilinear algebra, a reshaping of tensors is any bijection between the set of indices of an order- tensor and the set of indices of an order- tensor, where . The use of indices presupposes tensors in coordinate representation with respect to a basis. The coordinate representation of a tensor can be regarded as a multi-dimensional array, and a bijection from one set of indices to another therefore amounts to a rearrangement of the array elements into an array of a different shape. Such a rearrangement constitutes a particular kind of linear map between the vector space of order- tensors and the vector space of order- tensors.

In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal processing. Some aspects can be traced as far back as F. L. Hitchcock in 1928, but it was L. R. Tucker who developed for third-order tensors the general Tucker decomposition in the 1960s, further advocated by L. De Lathauwer et al. in their Multilinear SVD work that employs the power method, or advocated by Vasilescu and Terzopoulos that developed M-mode SVD a parallel algorithm that employs the matrix SVD.

<span class="mw-page-title-main">Lie point symmetry</span>

Lie point symmetry is a concept in advanced mathematics. Towards the end of the nineteenth century, Sophus Lie introduced the notion of Lie group in order to study the solutions of ordinary differential equations (ODEs). He showed the following main property: the order of an ordinary differential equation can be reduced by one if it is invariant under one-parameter Lie group of point transformations. This observation unified and extended the available integration techniques. Lie devoted the remainder of his mathematical career to developing these continuous groups that have now an impact on many areas of mathematically based sciences. The applications of Lie groups to differential systems were mainly established by Lie and Emmy Noether, and then advocated by Élie Cartan.

Multiway data analysis is a method of analyzing large data sets by representing a collection of observations as a multiway array, . The proper choice of data organization into (C+1)-way array, and analysis techniques can reveal patterns in the underlying data undetected by other methods.

In multilinear algebra, applying a map that is the tensor product of linear maps to a tensor is called a multilinear multiplication.

The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. Its subalgebras include diagram algebras such as the Brauer algebra, the Temperley–Lieb algebra, or the group algebra of the symmetric group. Representations of the partition algebra are built from sets of diagrams and from representations of the symmetric group.

Tensor informally refers in machine learning to two different concepts that organize and represent data. Data may be organized in a multidimensional array (M-way array) that is informally referred to as a "data tensor"; however in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector space. Observations, such as images, movies, volumes, sounds, and relationships among words and concepts, stored in an M-way array ("data tensor") may be analyzed either by artificial neural networks or tensor methods.

References

  1. 1 2 3 Vasilescu, M. Alex O. (2009), "Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision and Machine Learning" (PDF), University of Toronto, p. 21
  2. Vasilescu, M. Alex O.; Terzopoulos, Demetri (2002), "Multilinear Analysis of Image Ensembles: TensorFaces", Computer Vision — ECCV 2002, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 447–460, doi:10.1007/3-540-47969-4_30, ISBN   978-3-540-43745-1 , retrieved 2023-03-15
  3. Eldén, L.; Savas, B. (2009-01-01), "A Newton–Grassmann Method for Computing the Best Multilinear Rank- Approximation of a Tensor", SIAM Journal on Matrix Analysis and Applications, 31 (2): 248–271, CiteSeerX   10.1.1.151.8143 , doi:10.1137/070688316, ISSN   0895-4798
  4. 1 2 De Lathauwer, Lieven; De Mood, B.; Vandewalle, J. (2000), "A multilinear singular value decomposition", SIAM Journal on Matrix Analysis and Applications, 21 (4): 1253–1278, doi:10.1137/S0895479896305696