Modified Wigner distribution function

Last updated
Note: the Wigner distribution function is abbreviated here as WD rather than WDF as used at Wigner distribution function

A Modified Wigner distribution function is a variation of the Wigner distribution function (WD) with reduced or removed cross-terms.

Contents

The Wigner distribution (WD) was first proposed for corrections to classical statistical mechanics in 1932 by Eugene Wigner. The Wigner distribution function, or WignerVille distribution (WVD) for analytic signals, also has applications in time frequency analysis. The Wigner distribution gives better auto term localisation compared to the smeared out spectrogram (SP). However, when applied to a signal with multi frequency components, cross terms appear due to its quadratic nature. Several methods have been proposed to reduce the cross terms. For example, in 1994 Ljubiša Stanković proposed a novel technique, now mostly referred to as S-method, resulting in the reduction or removal of cross terms. The concept of the S-method is a combination between the spectrogram and the Pseudo Wigner Distribution (PWD), the windowed version of the WD.

The original WD, the spectrogram, and the modified WDs all belong to the Cohen's class of bilinear time-frequency representations :

where is Cohen's kernel function, which is often a low-pass function, and normally serves to mask out the interference in the original Wigner representation.

Mathematical definition

Cohen's kernel function :

where is the short-time Fourier transform of .

Cohen's kernel function : which is the WD of the window function itself. This can be verified by applying the convolution property of the Wigner distribution function.

The spectrogram cannot produce interference since it is a positive-valued quadratic distribution.


Can't solve the cross term problem, however it can solve the problem of 2 components time difference larger than window size B.

Where L is any integer greater than 0

Increase L can reduce the influence of cross term (however it can't eliminate completely )

For example, for L=2, the dominant third term is divided by 4 ( which is equivalent to 12dB ).

This gives a significant improvement over the Wigner Distribution.

Properties of L-Wigner Distribution:

  1. The L-Wigner Distribution is always real.
  2. If the signal is time shifted , then its LWD is time shifted as well,
  3. The LWD of a modulated signal is shifted in frequency
  4. Is the signal is time limited, i.e., then the L-Wigner distribution is time limited,
  5. If the signal is band limited with (), then is limited in the frequency domain by as well.
  6. Integral of L-Wigner distribution over frequency is equal to the generalized signal power:
  7. Integral of over time and frequency is equal to the power of the norm of signal :

  1. The integral over time is:

  1. For a large value of We may neglect all values of , Comparing them to the one at the points , where the distribution reaches its essential supremum:


When and , it becomes the original Wigner distribution function.

It can avoid the cross term when the order of phase of the exponential function is no larger than

However the cross term between two components cannot be removed.

should be chosen properly such that

If

when ,

Cohen's kernel function : which is concentred on the frequency axis.

Note that the pseudo Wigner can also be written as the Fourier transform of the “spectral-correlation” of the STFT

In the pseudo Wigner the time windowing acts as a frequency direction smoothing. Therefore, it suppresses the Wigner distribution interference components that oscillate in the frequency direction. Time direction smoothing can be implemented by a time-convolution of the PWD with a lowpass function  :

Cohen's kernel function : where is the Fourier transform of the window .

Thus the kernel corresponding to the smoothed pseudo Wigner distribution has a separable form. Note that even if the SPWD and the S-Method both smoothes the WD in the time domain, they are not equivalent in general.

Cohen's kernel function :

The S-method limits the range of the integral of the PWD with a low-pass windowing function of Fourier transform . This results in the cross-term removal, without blurring the auto-terms that are well-concentred along the frequency axis. The S-method strikes a balance in smoothing between the pseudo-Wigner distribution [] and the power spectrogram [].

Note that in the original 1994 paper, Stankovic defines the S-methode with a modulated version of the short-time Fourier transform :

where

Even in this case we still have

See also

Related Research Articles

<span class="mw-page-title-main">Convolution</span> Integral expressing the amount of overlap of one function as it is shifted over another

In mathematics, convolution is a mathematical operation on two functions that produces a third function. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The integral is evaluated for all values of shift, producing the convolution function. The choice of which function is reflected and shifted before the integral does not change the integral result. Graphically, it expresses how the 'shape' of one function is modified by the other.

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

Stransform as a time–frequency distribution was developed in 1994 for analyzing geophysics data. In this way, the S transform is a generalization of the short-time Fourier transform (STFT), extending the continuous wavelet transform and overcoming some of its disadvantages. For one, modulation sinusoids are fixed with respect to the time axis; this localizes the scalable Gaussian window dilations and translations in S transform. Moreover, the S transform doesn't have a cross-term problem and yields a better signal clarity than Gabor transform. However, the S transform has its own disadvantages: the clarity is worse than Wigner distribution function and Cohen's class distribution function.

In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency , . It represents the distortion of a returned pulse due to the receiver matched filter of the return from a moving target. The ambiguity function is defined by the properties of the pulse and of the filter, and not any particular target scenario.

A cyclostationary process is a signal having statistical properties that vary cyclically with time. A cyclostationary process can be viewed as multiple interleaved stationary processes. For example, the maximum daily temperature in New York City can be modeled as a cyclostationary process: the maximum temperature on July 21 is statistically different from the temperature on December 20; however, it is a reasonable approximation that the temperature on December 20 of different years has identical statistics. Thus, we can view the random process composed of daily maximum temperatures as 365 interleaved stationary processes, each of which takes on a new value once per year.

<span class="mw-page-title-main">Wigner distribution function</span>

The Wigner distribution function (WDF) is used in signal processing as a transform in time-frequency analysis.

<span class="mw-page-title-main">Gabor transform</span>

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

The Gabor transform, named after Dennis Gabor, and the Wigner distribution function, named after Eugene Wigner, are both tools for time-frequency analysis. Since the Gabor transform does not have high clarity, and the Wigner distribution function has a "cross term problem", a 2007 study by S. C. Pei and J. J. Ding proposed a new combination of the two transforms that has high clarity and no cross term problem. Since the cross term does not appear in the Gabor transform, the time frequency distribution of the Gabor transform can be used as a filter to filter out the cross term in the output of the Wigner distribution function.

Bilinear time–frequency distributions, or quadratic time–frequency distributions, arise in a sub-field of signal analysis and signal processing called time–frequency signal processing, and, in the statistical analysis of time series data. Such methods are used where one needs to deal with a situation where the frequency composition of a signal may be changing over time; this sub-field used to be called time–frequency signal analysis, and is now more often called time–frequency signal processing due to the progress in using these methods to a wide range of signal-processing problems.

Choi–Williams distribution function is one of the members of Cohen's class distribution function. It was first proposed by Hyung-Ill Choi and William J. Williams in 1989. This distribution function adopts exponential kernel to suppress the cross-term. However, the kernel gain does not decrease along the axes in the ambiguity domain. Consequently, the kernel function of Choi–Williams distribution function can only filter out the cross-terms that result from the components that differ in both time and frequency center.

The cone-shape distribution function, also known as the Zhao–Atlas–Marks time-frequency distribution,, is one of the members of Cohen's class distribution function. It was first proposed by Yunxin Zhao, Les E. Atlas, and Robert J. Marks II in 1990. The distribution's name stems from the twin cone shape of the distribution's kernel function on the plane. The advantage of the cone kernel function is that it can completely remove the cross-term between two components having the same center frequency. Cross-term results from components with the same time center, however, cannot be completely removed by the cone-shaped kernel.

Several techniques can be used to move signals in the time-frequency distribution. Similar to computer graphic techniques, signals can be subjected to horizontal shifting, vertical shifting, dilation (scaling), shearing, rotation, and twisting. These techniques can help to save the bandwidth with proper motions apply on the signals. Moreover, filters with proper motion transformation can save the hardware cost without additional filters.

Time–frequency analysis for music signals is one of the applications of time–frequency analysis. Musical sound can be more complicated than human vocal sound, occupying a wider band of frequency. Music signals are time-varying signals; while the classic Fourier transform is not sufficient to analyze them, time–frequency analysis is an efficient tool for such use. Time–frequency analysis is extended from the classic Fourier approach. Short-time Fourier transform (STFT), Gabor transform (GT) and Wigner distribution function (WDF) are famous time–frequency methods, useful for analyzing music signals such as notes played on a piano, a flute or a guitar.

In order to view a signal represented over both time and frequency axis, time–frequency representation is used. Spectrogram is one of the most popular time-frequency representation, and generalized spectrogram, also called "two-window spectrogram", is the generalized application of spectrogram.

In signal processing, the polynomial Wigner–Ville distribution is a quasiprobability distribution that generalizes the Wigner distribution function. It was proposed by Boualem Boashash and Peter O'Shea in 1994.

<span class="mw-page-title-main">Rectangular mask short-time Fourier transform</span>

In mathematics and Fourier analysis, a rectangular mask short-time Fourier transform (rec-STFT) has the simple form of short-time Fourier transform. Other types of the STFT may require more computation time than the rec-STFT.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

Distributional data analysis is a branch of nonparametric statistics that is related to functional data analysis. It is concerned with random objects that are probability distributions, i.e., the statistical analysis of samples of random distributions where each atom of a sample is a distribution. One of the main challenges in distributional data analysis is that the space of probability distributions is, while a convex space, is not a vector space.

References