This article's use of external links may not follow Wikipedia's policies or guidelines.(January 2023) |
Molecular recognition features (MoRFs) are small (10-70 residues) intrinsically disordered regions in proteins that undergo a disorder-to-order transition upon binding to their partners. MoRFs are implicated in protein-protein interactions, which serve as the initial step in molecular recognition. MoRFs are disordered prior to binding to their partners, whereas they form a common 3D structure after interacting with their partners. [1] [2] As MoRF regions tend to resemble disordered proteins with some characteristics of ordered proteins, [2] they can be classified as existing in an extended semi-disordered state. [3]
MoRFs can be separated in 4 categories according to the shape they form once bound to their partners. [2]
The categories are:
Determining protein structures experimentally is a very time-consuming and expensive process. Therefore, recent years have seen a focus on computational methods for predicting protein structure and structural characteristics. Some aspects of protein structure, such as secondary structure and intrinsic disorder, have benefited greatly from applications of deep learning on an abundance of annotated data. However, computational prediction of MoRF regions remains a challenging task due to the limited availability of annotated data and the rarity of the MoRF class itself. [4] Most current methods have been trained and benchmarked on the sets released by the authors of MoRFPred [5] in 2012, as well as another set released by the authors of MoRFChibi [6] [7] [8] based on experimentally-annotated MoRF data. The table below details some methods available as of 2019 for MoRF prediction (related problems are also touched upon). [9]
Predictor | Year Published | Predicts for | Methodology | Uses MSA |
---|---|---|---|---|
ANCHOR Archived 2009-10-23 at the Wayback Machine [10] | 2009 | Protein Binding Regions | Amino acid propensity and energy estimation analysis. | N |
ANCHOR2 [11] | 2018 | Protein Binding Regions | Amino acid propensity and energy estimation analysis. | N |
DISOPRED3 [12] | 2015 | Protein Intrinsic Disorder and Protein Binding Sites | Multistage component prediction (utilizing neural network, Support Vector Machine, and K-nearest neighbour models) for protein disorder prediction. Also uses an additional Support Vector Machine to interpolate binding regions from the disorder predictions. | Y |
DisoRDPbind [13] | 2015 | RNA, DNA, and Protein Binding Regions | Multiple logistic regression models based on predicted disorder, amino acid properties, and sequence composition. The result is aligned with transferred annotations from a functionally-annotated database. | N |
fMoRFPred [4] | 2016 | MoRFs | Faster version of MoRFPred without the use of multiple sequence alignments. | N |
MoRFchibi SYSTEM [6] [7] [8] | 2015 | MoRFs | Hierarchy of different in-house MoRF prediction models: MoRFchibi: Utilizes Bayes rule to combine the outcomes of two support Vector Machine modules using amino acid composition (Sigmoid kernel) and sequence similarity (RBF kernel). MoRFchibi_light: Utilizes Bayes rule to combine MoRFchibi and disorder prediction hierarchically. MoRFchibi_web: Utilizes Bayes rule to combine MoRFchibi, disorder prediction and PSSM (MSA) hierarchically. | N/Y |
MoRFPred [5] | 2012 | MoRFs | Support Vector Machine based on predicted sequence characteristics and alignment of input sequence to known MoRF database. | Y |
MoRFPred-Plus [14] | 2018 | MoRFs | Combined predictions from two Support Vector Machines, predicting for both MoRF regions and MoRF residues. | Y |
OPAL [15] | 2018 | MoRFs | Support Vector Machine based on physicochemical properties and predicted structural attributes of protein residues | Y |
OPAL+ [16] | 2019 | MoRFs | Ensemble of Support Vector Machines trained individually for length-specific MoRF regions. Also incorporates other predictors as a metapredictor. | Y |
SPINE-D [17] [18] | 2012 | Protein Intrinsic Disorder and Semi-Disorder | Neural network for predicting both long and short disordered regions. Semi-disorder can be linearly interpolated from its predicted disorder probabilities (0.4<=P(D)<=0.7). | Y |
SPOT-Disorder [19] | 2017 | Protein Intrinsic Disorder and Semi-Disorder | Bidirectional Long Short-Term Memory network for predicting intrinsic disorder. Semi-disordered regions can be linearly interpolated from its predicted disorder probabilities (0.28<=P(D)<=0.69). | Y |
SPOT-MoRF [20] | 2019 | MoRFs | Transfer learning from the large disorder prediction tool SPOT-Disorder2 [21] (which itself utilizes an ensemble of Bidirectional Long Short-Term Memory networks and Inception ResNets). | Y |
Bioinformatics is an interdisciplinary field of science that develops methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.
In computational biology, gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding genes as well as RNA genes, but may also include prediction of other functional elements such as regulatory regions. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been sequenced.
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context.
In molecular biology, an intrinsically disordered protein (IDP) is a protein that lacks a fixed or ordered three-dimensional structure, typically in the absence of its macromolecular interaction partners, such as other proteins or RNA. IDPs range from fully unstructured to partially structured and include random coil, molten globule-like aggregates, or flexible linkers in large multi-domain proteins. They are sometimes considered as a separate class of proteins along with globular, fibrous and membrane proteins.
In molecular biology short linear motifs (SLiMs), linear motifs or minimotifs are short stretches of protein sequence that mediate protein–protein interaction.
Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal transduction, and a single protein may play a role in multiple processes or cellular pathways.
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. Among other things, it identifies the locations of genes and all the coding regions in a genome and determines what those genes do.
In molecular biology, protein fold classes are broad categories of protein tertiary structure topology. They describe groups of proteins that share similar amino acid and secondary structure proportions. Each class contains multiple, independent protein superfamilies.
Burkhard Rost is a scientist leading the Department for Computational Biology & Bioinformatics at the Faculty of Informatics of the Technical University of Munich (TUM). Rost chairs the Study Section Bioinformatics Munich involving the TUM and the Ludwig Maximilian University of Munich (LMU) in Munich. From 2007-2014 Rost was President of the International Society for Computational Biology (ISCB).
In computational chemistry, conformational ensembles, also known as structural ensembles, are experimentally constrained computational models describing the structure of intrinsically unstructured proteins. Such proteins are flexible in nature, lacking a stable tertiary structure, and therefore cannot be described with a single structural representation. The techniques of ensemble calculation are relatively new on the field of structural biology, and are still facing certain limitations that need to be addressed before it will become comparable to classical structural description methods such as biological macromolecular crystallography.
Single nucleotide polymorphism annotation is the process of predicting the effect or function of an individual SNP using SNP annotation tools. In SNP annotation the biological information is extracted, collected and displayed in a clear form amenable to query. SNP functional annotation is typically performed based on the available information on nucleic acid and protein sequences.
Proline-rich protein 30 is a protein in humans that is encoded for by the PRR30 gene. PRR30 is a member in the family of Proline-rich proteins characterized by their intrinsic lack of structure. Copy number variations in the PRR30 gene have been associated with an increased risk for neurofibromatosis.
Machine learning in bioinformatics is the application of machine learning algorithms to bioinformatics, including genomics, proteomics, microarrays, systems biology, evolution, and text mining.
Hanah Margalit is a Professor in the faculty of medicine at the Hebrew University of Jerusalem. Her research combines bioinformatics, computational biology and systems biology, specifically in the fields of gene regulation in bacteria and eukaryotes.
An array of protein tandem repeats is defined as several adjacent copies having the same or similar sequence motifs. These periodic sequences are generated by internal duplications in both coding and non-coding genomic sequences. Repetitive units of protein tandem repeats are considerably diverse, ranging from the repetition of a single amino acid to domains of 100 or more residues.
Wojciech Maciej Karlowski is a Polish biologist specializing in molecular biology and bioinformatics, and a full professor in biological sciences. He is Head of the Department of Computational Biology at the Faculty of Biology at the Adam Mickiewicz University in Poznan. His major scientific interests include identification of non-coding RNAs, genomics, high-throughput analyses, and functional annotation of biological sequences.
LLPS often involves sequence regions that have unique functional characteristics, as well as the presence of prion-like and RNA-binding domains. Nowadays there are just a few methods to predict the propensity of a protein to drive LLPS. The range of biological mechanisms involved in LLPS, the limited knowledge about these mechanisms and the important context-dependent component of LLPS make this problem challenging. In the last years, despite the advances in this field, just few predictors, specific for LLPS, have been developed, trying to understand the relationship between protein sequence properties and the capability to drive LLPS. Here we will revise the state-of-the-art LLPS sequence-based predictors, briefly introducing them and explaining which are the individual protein characteristics that they identify in the context of LLPS.