Moran's I

Last updated
The white and black squares are perfectly dispersed so Moran's I would be -1 using a Rook neighbors definition. If the white squares were stacked to one half of the board and the black squares to the other, Moran's I approaches +1 as N increases. A random arrangement of square colors would give Moran's I a value that is close to 0. Checkerboard pattern.svg
The white and black squares are perfectly dispersed so Moran's I would be 1 using a Rook neighbors definition. If the white squares were stacked to one half of the board and the black squares to the other, Moran's I approaches +1 as N increases. A random arrangement of square colors would give Moran's I a value that is close to 0.

In statistics, Moran's I is a measure of spatial autocorrelation developed by Patrick Alfred Pierce Moran. [1] [2] Spatial autocorrelation is characterized by a correlation in a signal among nearby locations in space. Spatial autocorrelation is more complex than one-dimensional autocorrelation because spatial correlation is multi-dimensional (i.e. 2 or 3 dimensions of space) and multi-directional.

Contents

Global Moran's I

Global Moran's I is a measure of the overall clustering of the spatial data. It is defined as

where

Moran's I statistic computed for different spatial patterns. Using 'rook' neighbors for each grid cell, setting
w
i
j
=
1
{\displaystyle w_{ij}=1}
for neighbours
j
{\displaystyle j}
of
i
{\displaystyle i}
and then row normalizing the weight matrix. Top left shows anti-correlation giving a negative I. Top right shows a spatial gradient giving a large positive I. Bottom left shows random data giving a value of I near 0 (or
-
1
/
(
N
-
1
)
[?]
-
0.04
{\displaystyle -1/(N-1)\simeq -0.04}
). Bottom right shows an 'ink blot' or spreading pattern with positive autocorrelation. Moran's I example.png
Moran's I statistic computed for different spatial patterns. Using 'rook' neighbors for each grid cell, setting for neighbours of and then row normalizing the weight matrix. Top left shows anti-correlation giving a negative I. Top right shows a spatial gradient giving a large positive I. Bottom left shows random data giving a value of I near 0 (or ). Bottom right shows an 'ink blot' or spreading pattern with positive autocorrelation.

Defining the spatial weights matrix

The value of can depend quite a bit on the assumptions built into the spatial weights matrix . The matrix is required because, in order to address spatial autocorrelation and also model spatial interaction, we need to impose a structure to constrain the number of neighbors to be considered. This is related to Tobler's first law of geography, which states that Everything depends on everything else, but closer things more so—in other words, the law implies a spatial distance decay function, such that even though all observations have an influence on all other observations, after some distance threshold that influence can be neglected.

The idea is to construct a matrix that accurately reflects your assumptions about the particular spatial phenomenon in question. A common approach is to give a weight of 1 if two zones are neighbors, and 0 otherwise, though the definition of 'neighbors' can vary. Another common approach might be to give a weight of 1 to nearest neighbors, 0 otherwise. An alternative is to use a distance decay function for assigning weights. Sometimes the length of a shared edge is used for assigning different weights to neighbors. The selection of spatial weights matrix should be guided by theory about the phenomenon in question. The value of is quite sensitive to the weights and can influence the conclusions you make about a phenomenon, especially when using distances.

Expected value

The expected value of Moran's I under the null hypothesis of no spatial autocorrelation is

The null distribution used for this expectation is that the input is permuted by a permutation picked uniformly at random (and the expectation is over picking the permutation).

At large sample sizes (i.e., as N approaches infinity), the expected value approaches zero.

Its variance equals

where

[3]

Values significantly below -1/(N-1) indicate negative spatial autocorrelation and values significantly above -1/(N-1) indicate positive spatial autocorrelation. For statistical hypothesis testing, Moran's I values can be transformed to z-scores.

Values of I range between and [4] where and are the corresponding minimum and maximum eigenvalues of the weight matrix. For a row normalised matrix .

Moran's I is inversely related to Geary's C, but it is not identical. Moran's I is a measure of global spatial autocorrelation, while Geary's C is more sensitive to local spatial autocorrelation.

Local Moran's I

Clusters of the estimated percent of people in poverty by county in the contiguous United States in 2020 calculated using Anselin Local Moran's I. USA Contiguous Poverty 2020 clusters.jpg
Clusters of the estimated percent of people in poverty by county in the contiguous United States in 2020 calculated using Anselin Local Moran's I.

Global spatial autocorrelation analysis yields only one statistic to summarize the whole study area. In other words, the global analysis assumes homogeneity. If that assumption does not hold, then having only one statistic does not make sense as the statistic should differ over space.

Moreover, even if there is no global autocorrelation or no clustering, we can still find clusters at a local level using local spatial autocorrelation analysis. The fact that Moran's I is a summation of individual cross products is exploited by the "local indicators of spatial association" (LISA) to evaluate the clustering in those individual units by calculating Local Moran's I for each spatial unit and evaluating the statistical significance for each Ii. From the equation of Global Moran's I, we can obtain:

where:

then,

I is the Global Moran's I measuring global autocorrelation, Ii is local, and N is the number of analysis units on the map.

LISAs can be calculated in GeoDa and ArcGIS Pro which uses the Local Moran's I, [5] [6] proposed by Luc Anselin in 1995. [7]

Uses

Moran's I is widely used in the fields of geography and geographic information science. Some examples include:

See also

Related Research Articles

<span class="mw-page-title-main">Autocorrelation</span> Correlation of a signal with a time-shifted copy of itself, as a function of shift

Autocorrelation, sometimes known as serial correlation in the discrete time case, is the correlation of a signal with a delayed copy of itself as a function of delay. Informally, it is the similarity between observations of a random variable as a function of the time lag between them. The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise, or identifying the missing fundamental frequency in a signal implied by its harmonic frequencies. It is often used in signal processing for analyzing functions or series of values, such as time domain signals.

The weighted arithmetic mean is similar to an ordinary arithmetic mean, except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general form in several other areas of mathematics.

In linear algebra, the permanent of a square matrix is a function of the matrix similar to the determinant. The permanent, as well as the determinant, is a polynomial in the entries of the matrix. Both are special cases of a more general function of a matrix called the immanant.

In signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. ICA was invented by Jeanny Hérault and Christian Jutten in 1985. ICA is a special case of blind source separation. A common example application of ICA is the "cocktail party problem" of listening in on one person's speech in a noisy room.

<span class="mw-page-title-main">Nonlinear regression</span> Regression analysis

In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

<span class="mw-page-title-main">Inverse distance weighting</span> Type of deterministic method for multivariate interpolation

Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points. The assigned values to unknown points are calculated with a weighted average of the values available at the known points. This method can also be used to create spatial weights matrices in spatial autocorrelation analyses.

Weighted least squares (WLS), also known as weighted linear regression, is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression. WLS is also a specialization of generalized least squares, when all the off-diagonal entries of the covariance matrix of the errors, are null.

<span class="mw-page-title-main">Correlogram</span> Image of correlation statistics

In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.

<span class="mw-page-title-main">GeoDa</span> Free geovisualization and analysis software

GeoDa is a free software package that conducts spatial data analysis, geovisualization, spatial autocorrelation and spatial modeling.

Indicators of spatial association are statistics that evaluate the existence of clusters in the spatial arrangement of a given variable. For instance, if we are studying cancer rates among census tracts in a given city local clusters in the rates mean that there are areas that have higher or lower rates than is to be expected by chance alone; that is, the values occurring are above or below those of a random distribution in space.

The sample mean or empirical mean, and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables.

Geary's C is a measure of spatial autocorrelation that attempts to determine if observations of the same variable are spatially autocorrelated globally. Spatial autocorrelation is more complex than autocorrelation because the correlation is multi-dimensional and bi-directional.

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

The iterative proportional fitting procedure is the operation of finding the fitted matrix which is the closest to an initial matrix but with the row and column totals of a target matrix . The fitted matrix being of the form , where and are diagonal matrices such that has the margins of . Some algorithms can be chosen to perform biproportion. We have also the entropy maximization, information loss minimization or RAS which consists of factoring the matrix rows to match the specified row totals, then factoring its columns to match the specified column totals; each step usually disturbs the previous step's match, so these steps are repeated in cycles, re-adjusting the rows and columns in turn, until all specified marginal totals are satisfactorily approximated. However, all algorithms give the same solution. In three- or more-dimensional cases, adjustment steps are applied for the marginals of each dimension in turn, the steps likewise repeated in cycles.

Getis–Ord statistics, also known as Gi*, are used in spatial analysis to measure the local and global spatial autocorrelation. Developed by statisticians Arthur Getis and J. Keith Ord they are commonly used for Hot Spot Analysis to identify where features with high or low values are spatially clustered in a statistically significant way. Getis-Ord statistics are available in a number of software libraries such as CrimeStat, GeoDa, ArcGIS, PySAL and R.

Wartenberg's coefficient is a measure of correlation developed by epidemiologist Daniel Wartenberg. This coefficient is a multivariate extension of spatial autocorrelation that aims to account for spatial dependence of data while studying their covariance. A modified version of this statistic is available in the R package adespatial.

Lee's L is a bivariate spatial correlation coefficient which measures the association between two sets of observations made at the same spatial sites. Standard measures of association such as the Pearson correlation coefficient do not account for the spatial dimension of data, in particular they are vulnerable to inflation due to spatial autocorrelation. Lee's L is available in numerous spatial analysis software libraries including spdep and PySAL and has been applied in diverse applications such as studying air pollution, viticulture and housing rent.


Join count statistics are a method of spatial analysis used to assess the degree of association, in particular the autocorrelation, of categorical variables distributed over a spatial map. They were originally introduced by Australian statistician P. A. P. Moran. Join count statistics have found widespread use in econometrics, remote sensing and ecology. Join count statistics can be computed in a number of software packages including PASSaGE, GeoDA, PySAL and spdep.

The concept of a spatial weight is used in spatial analysis to describe neighbor relations between regions on a map. If location is a neighbor of location then otherwise . Usually we do not consider a site to be a neighbor of itself so . These coefficients are encoded in the spatial weight matrix

References

  1. Moran, P. A. P. (1950). "Notes on Continuous Stochastic Phenomena". Biometrika. 37 (1): 17–23. doi:10.2307/2332142. JSTOR   2332142. PMID   15420245.
  2. Li, Hongfei; Calder, Catherine A.; Cressie, Noel (2007). "Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model". Geographical Analysis. 39 (4): 357–375. doi:10.1111/j.1538-4632.2007.00708.x.
  3. Cliff and Ord (1981), Spatial Processes, London
  4. de Jong, P., Sprenger, C. and van Veen, F., 1984. On extreme values of Moran's I and Geary's c. Geographical Analysis, 16(1), pp.17-24.
  5. Anselin, Luc (2005). "Exploring Spatial Data with GeoDa: A Workbook" (PDF). Spatial Analysis Laboratory. p. 138.
  6. "Cluster and Outlier Analysis (Anselin Local Moran's I) (Spatial Statistics)". ESRI. Retrieved 28 May 2024.
  7. Anselin, Luc (1995). "Local Indicators of Spatial Association—LISA". Geographical Analysis. 27 (2): 93–115. doi: 10.1111/j.1538-4632.1995.tb00338.x .
  8. Getis, Arthur (3 Sep 2010). "The Analysis of Spatial Association by Use of Distance Statistics". Geographical Analysis. 24 (3): 189–206. doi: 10.1111/j.1538-4632.1992.tb00261.x .
  9. Helbich, M; Leitner, M; Kapusta, ND (2012). "Geospatial examination of lithium in drinking water and suicide mortality". Int J Health Geogr. 11 (1): 19. doi: 10.1186/1476-072X-11-19 . PMC   3441892 . PMID   22695110.
  10. Grieve, Jack (2011). "A regional analysis of contraction rate in written Standard American English". International Journal of Corpus Linguistics. 16 (4): 514–546. doi:10.1075/ijcl.16.4.04gri.
  11. Alvioli, M.; Marchesini, I.; Reichenbach, P.; Rossi, M.; Ardizzone, F.; Fiorucci, F.; Guzzetti, F. (2016). "Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling". Geoscientific Model Development. 9: 3975–3991. doi: 10.5194/gmd-9-3975-2016 .