Morin surface

Last updated
Morin surface seen from the top MorinSurfaceFromTheTop.PNG
Morin surface seen from the top
Morin surface seen from the side MorinSurfaceCrossView.PNG
Morin surface seen from the side

The Morin surface is the half-way model of the sphere eversion discovered by Bernard Morin. It features fourfold rotational symmetry.

Sphere eversion turning a sphere inside-out without creasing; a regular homotopy of immersions S² → ℝ³ from the unit sphere to the same with the opposite orientation

In differential topology, sphere eversion is the process of turning a sphere inside out in a three-dimensional space. Remarkably, it is possible to smoothly and continuously turn a sphere inside out in this way without cutting or tearing it or creating any crease. This is surprising, both to non-mathematicians and to those who understand regular homotopy, and can be regarded as a veridical paradox; that is something that, while being true, on first glance seems false.

Bernard Morin French mathematician

Bernard Morin was a French mathematician, specifically a topologist.

Symmetry state; balance of object

Symmetry in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definition, that an object is invariant to any of various transformations; including reflection, rotation or scaling. Although these two meanings of "symmetry" can sometimes be told apart, they are related, so in this article they are discussed together.

Contents

If the original sphere to be everted has its outer surface colored green and its inner surface colored red, then when the sphere is transformed through homotopy into a Morin surface, half of the outwardly visible Morin surface will be green, and half red:

Homotopy deformation

In topology, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

MorinSurfaceAsSphere'sInsideVersusOutside.PNG
Half of a Morin surface corresponds to the exterior (green) of the sphere
to which it is homeomorphic, and the other symmetric half to the interior (red).

Then, rotating the surface 90° around its axis of symmetry will exchange its colors, i.e. will exchange the inner-outer polarity of the orientable surface, so that retracing the steps of the homotopy at exactly the same position back to the original sphere after having so rotated the Morin surface will yield a sphere whose outer surface is red and whose inner surface is green: a sphere which has been turned inside out. The following is a summary of the eversion:

1. sphere: green outside, red inside...
2. transforms into...
3. Morin surface,
3'. Morin surface rotated 90°...
2'. inversely transforms into...
1'. sphere: red outside, green inside.

Structure of the Morin surface

The Morin surface can be separated into four congruent quarter sections. These sections may be here called section East, section South, section West, and section North, or respectively section 0, section 1, section 2, and section 3.
MorinSurfaceSectionEast.PNG

Section East of the Morin surface.

The Morin surface has a quadruple point through which passes its axis of symmetry. This quadruple point is the starting point and the end point of six lines of double points. Each of the quarter sections is bounded by three of these lines of double points, so that each quarter section is homeomorphic to a triangle. Section East is now shown schematically:
MorinSurfaceQuarterSection.PNG
The diagram shows section East bounded by three loops: ABCDA, AEFGA, and AHIJA. The third loop, AHIJA, is a line of double points where section East intersects with itself. Loop ABCDA is only a line of double points when section East is joined to section West, and loop AEFGA is only a line of double points when section East is joined to section South. Point is the quadruple point which is actually the overlapping of four different points: A0, A1, A2, A3.

This is how section East is joined to the other sections: let each of its bounding loops be specified by an ordered quintuple of points, then

where unprimed points belong to section 0 (East), primed points belong to section 1 (South), double-primed points belong to section 2 (West), and triple-primed points belong to section 3 (North).

The remaining three loops connect sections as follows:

Section East has, considered just by itself, one loop of double points: AHIJA. If the surface is unwound and flattened the result will be the following:
MorinSurfaceQuarterSectionFlattened.PNG
which is homeomorphic to a triangle:
MorinSurfaceQuarterSectionTriangulated.PNG

Joining the four triangular sections at their seams will produce a tetrahedron:
MorinSurfaceQuarterSectionsJoined.PNG
which is homeomorphic to a sphere, which shows the Morin surface is a self-intersecting sphere.

QuartetOfMorinSurfaces(WithoutPassageBarriers).PNG

Four different views of the Morin surface: the first two are shown with "passage barriers" cut out, the last two are views from the "bottom".

Analytic Morin surface

Morin surface can be elegantly described by a set of equations [1] in either open version (with poles sent to infinity) or closed.

Ruled model of open Morin surface
Hw-a.png
top view
Hw-b.png
diagonal view
Hw-c.png
side view
Closed Morin surface
Morin-a.png
top view
Morin-b.png
diagonal view
Morin-c.png
side view
Nylon string model of open Morin surface
Q-point.jpg
top view
Q-point2.jpg
side view

See also

Related Research Articles

Diffeomorphism isomorphism of smooth manifolds

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are smooth.

In the mathematical field of algebraic topology, the fundamental group is a mathematical group associated to any given pointed topological space that provides a way to determine when two paths, starting and ending at a fixed base point, can be continuously deformed into each other. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a topological invariant: homeomorphic topological spaces have the same fundamental group.

Homeomorphism In mathematics, isomorphism of topological spaces

In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word homeomorphism comes from the Greek words ὅμοιος (homoios) = similar or same and μορφή (morphē) = shape, form, introduced to mathematics by Henri Poincaré in 1895.

In mathematics, homology is a general way of associating a sequence of algebraic objects such as abelian groups or modules to other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

Orientability

In mathematics, orientability is a property of surfaces in Euclidean space that measures whether it is possible to make a consistent choice of surface normal vector at every point. A choice of surface normal allows one to use the right-hand rule to define a "clockwise" direction of loops in the surface, as needed by Stokes' theorem for instance. More generally, orientability of an abstract surface, or manifold, measures whether one can consistently choose a "clockwise" orientation for all loops in the manifold. Equivalently, a surface is orientable if a two-dimensional figure such as in the space cannot be moved (continuously) around the space and back to where it started so that it looks like its own mirror image .

The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeroes and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.

Fiber bundle continuous surjection satisfying a local triviality condition

In mathematics, and particularly topology, a fiber bundle is a space that is locally a product space, but globally may have a different topological structure. Specifically, the similarity between a space E and a product space is defined using a continuous surjective map

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In mathematics, the smash product of two pointed spaces and is the quotient of the product space X × Y under the identifications (xy0) ∼ (x0y) for all x ∈ X and y ∈ Y. The smash product is itself a pointed space, with basepoint being the equivalence class of. The smash product is usually denoted X ∧ Y or X ⨳ Y. The smash product depends on the choice of basepoints.

In differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one.

A Seifert fiber space is a 3-manifold together with a "nice" decomposition as a disjoint union of circles. In other words, it is a -bundle over a 2-dimensional orbifold. Most "small" 3-manifolds are Seifert fiber spaces, and they account for all compact oriented manifolds in 6 of the 8 Thurston geometries of the geometrization conjecture.

In mathematics, a fundamental polygon can be defined for every compact Riemann surface of genus greater than 0. It encodes not only the topology of the surface through its fundamental group but also determines the Riemann surface up to conformal equivalence. By the uniformization theorem, every compact Riemann surface has simply connected universal covering surface given by exactly one of the following:

Manifold topological space that at each point resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of an n-dimensional manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. In this more precise terminology, a manifold is referred to as an n-manifold.

In geometry, minimax eversions are a class of sphere eversions, constructed by using half-way models.

Pus inequality

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

Differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric

In mathematics, the differential geometry of surfaces deals with the differential geometry of smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives: extrinsically, relating to their embedding in Euclidean space and intrinsically, reflecting their properties determined solely by the distance within the surface as measured along curves on the surface. One of the fundamental concepts investigated is the Gaussian curvature, first studied in depth by Carl Friedrich Gauss, who showed that curvature was an intrinsic property of a surface, independent of its isometric embedding in Euclidean space.

In mathematics, especially in the area of topology known as algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.

References

  1. Bednorz, Adam; Bednorz, Witold (2017). "Analytic sphere eversion with minimum of topological events". arXiv: 1711.10466 Lock-green.svg [math.GT].