Morlet wavelet

Last updated
Real-valued Morlet wavelet MorletWaveletMathematica.svg
Real-valued Morlet wavelet
Complex-valued Morlet wavelet Wavelet Cmor.svg
Complex-valued Morlet wavelet

In mathematics, the Morlet wavelet (or Gabor wavelet) [1] is a wavelet composed of a complex exponential (carrier) multiplied by a Gaussian window (envelope). This wavelet is closely related to human perception, both hearing [2] and vision. [3]

Contents

History

In 1946, physicist Dennis Gabor, applying ideas from quantum physics, introduced the use of Gaussian-windowed sinusoids for time-frequency decomposition, which he referred to as atoms , and which provide the best trade-off between spatial and frequency resolution. [1] These are used in the Gabor transform, a type of short-time Fourier transform. [2] In 1984, Jean Morlet introduced Gabor's work to the seismology community and, with Goupillaud and Grossmann, modified it to keep the same wavelet shape over equal octave intervals, resulting in the first formalization of the continuous wavelet transform. [4]

Definition

The wavelet is defined as a constant subtracted from a plane wave and then localised by a Gaussian window: [5]

where is defined by the admissibility criterion, and the normalisation constant is:

The Fourier transform of the Morlet wavelet is:

The "central frequency" is the position of the global maximum of which, in this case, is given by the positive solution to:

[ citation needed ]

which can be solved by a fixed-point iteration starting at (the fixed-point iterations converge to the unique positive solution for any initial ).[ citation needed ]

The parameter in the Morlet wavelet allows trade between time and frequency resolutions. Conventionally, the restriction is used to avoid problems with the Morlet wavelet at low (high temporal resolution).[ citation needed ]

For signals containing only slowly varying frequency and amplitude modulations (audio, for example) it is not necessary to use small values of . In this case, becomes very small (e.g. ) and is, therefore, often neglected. Under the restriction , the frequency of the Morlet wavelet is conventionally taken to be .[ citation needed ]

The wavelet exists as a complex version or a purely real-valued version. Some distinguish between the "real Morlet" vs the "complex Morlet". [6] Others consider the complex version to be the "Gabor wavelet", while the real-valued version is the "Morlet wavelet". [7] [8]

Uses

Use in medicine

In magnetic resonance spectroscopy imaging, the Morlet wavelet transform method offers an intuitive bridge between frequency and time information which can clarify the interpretation of complex head trauma spectra obtained with Fourier transform. The Morlet wavelet transform, however, is not intended as a replacement for the Fourier transform, but rather a supplement that allows qualitative access to time related changes and takes advantage of the multiple dimensions available in a free induction decay analysis. [9]

The application of the Morlet wavelet analysis is also used to discriminate abnormal heartbeat behavior in the electrocardiogram (ECG). Since the variation of the abnormal heartbeat is a non-stationary signal, this signal is suitable for wavelet-based analysis.

Use in music

The Morlet wavelet transform is used in pitch estimation and can produce more accurate results than Fourier transform techniques. [10] The Morlet wavelet transform is capable of capturing short bursts of repeating and alternating music notes with a clear start and end time for each note.[ citation needed ]

A modified morlet wavelet was proposed to extract melody from polyphonic music. [11] This methodology is designed for the detection of closed frequency. The Morlet wavelet transform is able to capture music notes and the relationship of scale and frequency is represented as the follow:

where is the pseudo frequency to scale , is the center frequency and is the sampling time.

Morlet wavelet is modified as described as:

and its Fourier transformation:

Application

See also

Related Research Articles

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Wavelet</span> Function for integral Fourier-like transform

A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

In mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The th partial Fourier series of the function produces large peaks around the jump which overshoot and undershoot the function values. As more sinusoids are used, this approximation error approaches a limit of about 9% of the jump, though the infinite Fourier series sum does eventually converge almost everywhere except points of discontinuity.

<span class="mw-page-title-main">Short-time Fourier transform</span> Fourier-related transform suited to signals that change rather quickly in time

The short-time Fourier transform (STFT), is a Fourier-related transform used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. In practice, the procedure for computing STFTs is to divide a longer time signal into shorter segments of equal length and then compute the Fourier transform separately on each shorter segment. This reveals the Fourier spectrum on each shorter segment. One then usually plots the changing spectra as a function of time, known as a spectrogram or waterfall plot, such as commonly used in software defined radio (SDR) based spectrum displays. Full bandwidth displays covering the whole range of an SDR commonly use fast Fourier transforms (FFTs) with 2^24 points on desktop computers.

<span class="mw-page-title-main">Continuous wavelet transform</span> Integral transform

In mathematics, the continuous wavelet transform (CWT) is a formal tool that provides an overcomplete representation of a signal by letting the translation and scale parameter of the wavelets vary continuously.

In applied mathematics, the complex Mexican hat wavelet is a low-oscillation, complex-valued, wavelet for the continuous wavelet transform. This wavelet is formulated in terms of its Fourier transform as the Hilbert analytic signal of the conventional Mexican hat wavelet:

In signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal and some transform, time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.

<span class="mw-page-title-main">Gabor filter</span> Linear filter used for texture analysis

In image processing, a Gabor filter, named after Dennis Gabor, who first proposed it as a 1D filter. The Gabor filter was first generalized to 2D by Gösta Granlund, by adding a reference direction. The Gabor filter is a linear filter used for texture analysis, which essentially means that it analyzes whether there is any specific frequency content in the image in specific directions in a localized region around the point or region of analysis. Frequency and orientation representations of Gabor filters are claimed by many contemporary vision scientists to be similar to those of the human visual system. They have been found to be particularly appropriate for texture representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane wave.

<span class="mw-page-title-main">Wavelet transform</span> Mathematical technique used in data compression and analysis

In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.

<span class="mw-page-title-main">Gabor transform</span>

The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:

Continuous wavelets of compact support alpha can be built, which are related to the beta distribution. The process is derived from probability distributions using blur derivative. These new wavelets have just one cycle, so they are termed unicycle wavelets. They can be viewed as a soft variety of Haar wavelets whose shape is fine-tuned by two parameters and . Closed-form expressions for beta wavelets and scale functions as well as their spectra are derived. Their importance is due to the Central Limit Theorem by Gnedenko and Kolmogorov applied for compactly supported signals.

In functional analysis, the Shannon wavelet is a decomposition that is defined by signal analysis by ideal bandpass filters. Shannon wavelet may be either of real or complex type.

The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.

Fractional wavelet transform (FRWT) is a generalization of the classical wavelet transform (WT). This transform is proposed in order to rectify the limitations of the WT and the fractional Fourier transform (FRFT). The FRWT inherits the advantages of multiresolution analysis of the WT and has the capability of signal representations in the fractional domain which is similar to the FRFT.

<span class="mw-page-title-main">Meyer wavelet</span>

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification.

In mathematics, in functional analysis, several different wavelets are known by the name Poisson wavelet. In one context, the term "Poisson wavelet" is used to denote a family of wavelets labeled by the set of positive integers, the members of which are associated with the Poisson probability distribution. These wavelets were first defined and studied by Karlene A. Kosanovich, Allan R. Moser and Michael J. Piovoso in 1995–96. In another context, the term refers to a certain wavelet which involves a form of the Poisson integral kernel. In still another context, the terminology is used to describe a family of complex wavelets indexed by positive integers which are connected with the derivatives of the Poisson integral kernel.

In signal processing it is useful to simultaneously analyze the space and frequency characteristics of a signal. While the Fourier transform gives the frequency information of the signal, it is not localized. This means that we cannot determine which part of a signal produced a particular frequency. It is possible to use a short time Fourier transform for this purpose, however the short time Fourier transform limits the basis functions to be sinusoidal. To provide a more flexible space-frequency signal decomposition several filters have been proposed. The Log-Gabor filter is one such filter that is an improvement upon the original Gabor filter. The advantage of this filter over the many alternatives is that it better fits the statistics of natural images compared with Gabor filters and other wavelet filters.

Linear expansions in a single basis, whether it is a Fourier series, wavelet, or any other basis, are not suitable enough. A Fourier basis provided a poor representation of functions well localized in time, and wavelet bases are not well adapted to represent functions whose Fourier transforms have a narrow high frequency support. In both cases, it is difficult to detect and identify the signal patterns from their expansion coefficients, because the information is diluted across the whole basis. Therefore, we must use large amounts of Fourier basis or Wavelets to represent whole signal with small approximation error. Some matching pursuit algorithms are proposed in reference papers to minimize approximation error when given the amount of basis.

Multiresolution Fourier Transform is an integral fourier transform that represents a specific wavelet-like transform with a fully scalable modulated window, but not all possible translations.

References

  1. 1 2 A Real-Time Gabor Primal Sketch for Visual Attention "The Gabor kernel satisfies the admissibility condition for wavelets, thus being suited for multi-resolution analysis. Apart from a scale factor, it is also known as the Morlet Wavelet."
  2. 1 2 Mallat, Stephane (September 18, 2009). "Time-Frequency Dictionaries". A Wavelet Tour of Signal Processing, The Sparse Way.
  3. J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7):1160–1169, July 1985.
  4. "Archived copy" (PDF). Archived from the original (PDF) on 2013-06-09. Retrieved 2012-05-12.{{cite web}}: CS1 maint: archived copy as title (link)
  5. John Ashmead (2012). "Morlet Wavelets in Quantum Mechanics". Quanta. 1 (1): 58–70. arXiv: 1001.0250 . doi:10.12743/quanta.v1i1.5. S2CID   73526961.
  6. "Matlab Wavelet Families". Archived from the original on 2019-08-10.
  7. Mathematica documentation: GaborWavelet
  8. Mathematica documentation: MorletWavelet
  9. http://cds.ismrm.org/ismrm-2001/PDF3/0822.pdf [ bare URL PDF ]
  10. Kumar, Neeraj; Kumar, Raubin (2020-01-29). "Wavelet transform-based multipitch estimation in polyphonic music". Heliyon. 6 (1): e03243. doi:10.1016/j.heliyon.2020.e03243. ISSN   2405-8440. PMC   7000807 . PMID   32042974.
  11. Kumar, Neeraj; Kumar, Raubin; Murmu, Govind; Sethy, Prabira Kumar (2021-02-01). "Extraction of melody from polyphonic music using modified morlet wavelet". Microprocessors and Microsystems. 80: 103612. doi:10.1016/j.micpro.2020.103612. ISSN   0141-9331.
  12. Shao, Haidong; Xia, Min; Wan, Jiafu; Clarence, W. de Silva (February 2022). "Modified Stacked Autoencoder Using Adaptive Morlet Wavelet for Intelligent Fault Diagnosis of Rotating Machinery". IEEE/ASME Transactions on Mechatronics.
  13. Zulqurnain, Sabir; Muhammad, Umar; Muhammad, Asif Zahoor Raja; Haci, Mehmet Baskonus; Gao, Wei (2022). "Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system". International Journal of Biomathematics. 15 (4). doi:10.1142/S1793524522500127.
  14. Wang, B. O; J. F. Gomez-Aguilar; Zulqurnain Sabir; Muhammad Asif Zahoor Raja; Wei-Feng Xia; H. A. D. I. Jahanshahi; Madini O. Alassafi; Fawaz E. Alsaadi (2022). "Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks". Fractals. 30 (5). doi: 10.1142/S0218348X22401478 .
  15. Z. Cui; Y. Gao; J. Hu; S. Tian; J. Cheng (March 2021). "LOS/NLOS Identification for Indoor UWB Positioning Based on Morlet Wavelet Transform and Convolutional Neural Networks". IEEE Communications Letters.
  16. Simon J. Ward; Rabeb Layouni; Sofia Arshavsky-Graham; Ester Segal; Sharon M. Weiss (2021). "Morlet Wavelet Filtering and Phase Analysis to Reduce the Limit of Detection for Thin Film Optical Biosensors". ACS Sensors. 6 (8): 2967–2978. doi:10.1021/acssensors.1c00787. PMC   8403169 .