In meteorology, a mountain breeze and a valley breeze are two related, localized winds that occur one after the other on a daily cycle. They are an example of anabatic and katabatic winds occurring at local scales. [1] These winds are opposite from each other. Mountain winds blow from mountain towards valley after sunset, when mountain cools down and valley zone is comparatively warmer. While valley breezes occur when the warm air rises up the sides of the valley, [2] warm air in a mountain breeze will rise up the middle. [3]
Mountain and valley breezes form through a process similar to sea and land breezes. During the day, the sun heats up mountain air rapidly while the valley remains relatively cooler. Convection causes it to rise, causing a valley breeze. At night, the process is reversed. During the night the slopes get cooled and the dense air descends into the valley as the mountain wind. [4] These breezes occur mostly during calm and clear weather. Mountain and valley breezes are other examples of local winds caused by an area's geography. Campers in mountainous areas may feel a warm afternoon quickly change into a cold night soon after the sun sets. During the day, the sun warms the air along the mountain slopes. This warm air rises up the mountain slopes, creating a valley breeze. At nightfall, the air along the mountain slopes cools. This cool air moves down the slopes into the valley, producing a mountain breeze.
Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.
Surface weather analysis is a special type of weather map that provides a view of weather elements over a geographical area at a specified time based on information from ground-based weather stations.
A katabatic wind is a downslope wind caused by the flow of an elevated, high-density air mass into a lower-density air mass below under the force of gravity. The spelling catabatic is also used. Since air density is strongly dependent on temperature, the high-density air mass is usually cooler, and the katabatic winds are relatively cool or cold.
A Foehn, or Föhn, is a type of dry, relatively warm downslope wind in the lee of a mountain range. It is a rain shadow wind that results from the subsequent adiabatic warming of air that has dropped most of its moisture on windward slopes. As a consequence of the different adiabatic lapse rates of moist and dry air, the air on the leeward slopes becomes warmer than equivalent elevations on the windward slopes.
A sea breeze or onshore breeze is any wind that blows from a large body of water toward or onto a landmass. By contrast, a land breeze or offshore breeze is any wind that blows from a landmass toward or onto a large body of water. Sea breezes and land breezes are both important factors in coastal regions' prevailing winds.
An anabatic wind, from the Greek anabatos, verbal of anabainein meaning "moving upward", is a warm wind which blows up a steep slope or mountain side, driven by heating of the slope through insolation. It is also known as upslope flow. These winds typically occur during the daytime in calm sunny weather. A hill or mountain top will be radiatively warmed by the Sun which in turn heats the air just above it. Air at a similar altitude over an adjacent valley or plain does not get warmed so much because of the greater distance to the ground below it.
In meteorology, a low-pressure area, low area or low is a region where the atmospheric pressure is lower than that of surrounding locations. It is the opposite of a high-pressure area. Low-pressure areas are commonly associated with inclement weather, while high-pressure areas are associated with lighter winds and clear skies. Winds circle anti-clockwise around lows in the northern hemisphere, and clockwise in the southern hemisphere, due to opposing Coriolis forces. Low-pressure systems form under areas of wind divergence that occur in the upper levels of the atmosphere (aloft). The formation process of a low-pressure area is known as cyclogenesis. In meteorology, atmospheric divergence aloft occurs in two kinds of places:
A thermocline is a distinct layer based on temperature within a large body of fluid with a high gradient of distinct temperature differences associated with depth. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.
In meteorology, prevailing wind in a region of the Earth's surface is a surface wind that blows predominantly from a particular direction. The dominant winds are the trends in direction of wind with the highest speed over a particular point on the Earth's surface at any given time. A region's prevailing and dominant winds are the result of global patterns of movement in the Earth's atmosphere. In general, winds are predominantly easterly at low latitudes globally. In the mid-latitudes, westerly winds are dominant, and their strength is largely determined by the polar cyclone. In areas where winds tend to be light, the sea breeze-land breeze cycle is the most important cause of the prevailing wind. In areas which have variable terrain, mountain and valley breezes dominate the wind pattern. Highly elevated surfaces can induce a thermal low, which then augments the environmental wind flow. Wind direction at any given time is influenced by synoptic-scale and mesoscale weather like pressure systems and fronts. Local wind direction can also be influenced by microscale features like buildings.
A fall wind is a type of downslope wind. Like katabatic winds, it is driven by the flow of an elevated, high-density air mass into a lower-density (warmer) air mass, but the term fall wind is restricted to the cases where the cold air mass is not due to radiative cooling of a slope, but to the presence of a dense air mass at the top of a slope. A well-known example of a fall wind is the Bora in the Adriatic sea region, to the extent that the term ‘bora wind’ is sometimes used to designate a fall wind.
A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift.
In meteorology, air currents are concentrated areas of winds. They are mainly due to differences in atmospheric pressure or temperature. They are divided into horizontal and vertical currents; both are present at mesoscale while horizontal ones dominate at synoptic scale. Air currents are not only found in the troposphere, but extend to the stratosphere and mesosphere.
Berg wind is the South African name for a katabatic wind: a hot dry wind blowing down the Great Escarpment from the high central plateau to the coast.
In meteorology, the different types of precipitation often include the character, formation, or phase of the precipitation which is falling to ground level. There are three distinct ways that precipitation can occur. Convective precipitation is generally more intense, and of shorter duration, than stratiform precipitation. Orographic precipitation occurs when moist air is forced upwards over rising terrain and condenses on the slope, such as a mountain.
Wind is the natural movement of air or other gases relative to a planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting a few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth. The study of wind is called anemology.
Thermal lows, or heat lows, are non-frontal low-pressure areas that occur over the continents in the subtropics during the warm season, as the result of intense heating when compared to their surrounding environments. Thermal lows occur near the Sonoran Desert, on the Mexican Plateau, in California's Great Central Valley, in the Sahara, in the Kalahari, over north-west Argentina, in South America, over the Kimberley region of north-west Australia, over the Iberian Peninsula, and over the Tibetan Plateau.
The alpine planetary boundary layer is the planetary boundary layer (PBL) associated with mountainous regions. Due to its high spatial and temporal variability, its behavior is more complex than over a flat terrain. The fast changing local wind system directly linked to topography and the variable land cover that goes from snow to vegetation have a significant effect on the growth of the PBL and make it much harder to predict.
This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.
The southeast Australian foehn is a westerly foehn wind and a rain shadow effect that usually occurs on the coastal plain of southern New South Wales, and as well as in southeastern Victoria and eastern Tasmania, on the leeward side of the Great Dividing Range.
A cold-air pool is an accumulation of cold air in a topographic depression, such as a valley or basin. The cold air is produced by radiative cooling at night along the slopes and sinks down, as it is denser than the surrounding air, settling at the bottom of the depression. The cold dome is trapped by the surrounding higher terrain until a change of air mass or daytime heating breaks the temperature inversion. Since the cold-air pool can persist for long periods, it leads to poor air quality and fog.