Multi-unit spectroscopic explorer

Last updated
MUSE mounted on the VLT Yepun (UT4) MUSE on Nasmyth side view.jpg
MUSE mounted on the VLT Yepun (UT4)

The Multi-Unit Spectroscopic Explorer (MUSE) is an integral field spectrograph installed at the Very Large Telescope (VLT) of the European Southern Observatory (ESO). [1] [2] [3] It operates in the visible wavelength range, [1] and combines a wide field of view with a high spatial resolution and a large simultaneous spectral range (480-930 nm). [4] It is specifically designed to take advantage of the improved spatial resolution provided by adaptive optics, offering diffraction-limited performance in specific configurations. [1] MUSE had first light on the VLT’s Unit Telescope 4 (UT4) on 31 January 2014. [5]

Contents

Background

MUSE at the Lyon Observatory: The ESO director general, two local politicians, the university president, and the instrument's principal investigator A celebration of MUSE at the Observatoire de Lyon.jpg
MUSE at the Lyon Observatory: The ESO director general, two local politicians, the university president, and the instrument's principal investigator

Traditionally astronomical observations in the optical region have been separated into imaging and spectroscopy. The former can cover a wide field of view, but at the cost of a very coarse resolution in the wavelength direction. The latter has tended to either lose spatial resolution - completely in the case of fibre spectrographs, and partially in the case of long-slit spectrographs - or to have only coarse spatial resolving power in the case of recent integral field spectrographs.

MUSE was devised to improve on this situation by providing both high spatial resolution as well as a good spectral coverage. The principal investigator of the instrument is Roland Bacon at the Lyon Centre for Astrophysics Research (CRAL) in charge of a consortium consisting of six major European institutes: CRAL at Lyon Observatory is the PI institute and led the construction of the majority of the instrument. Other involved institutes include the German Institut für Astrophysik Göttingen (IAG) and the Leibniz Institute for Astrophysics Potsdam (AIP), the Netherlands Research School for Astronomy (NOVA), the Institut de Recherche en Astrophysique et Planétologie (IRAP), France, ETH Zürich, Switzerland as well as the European Southern Observatory (ESO).

The kick-off for the project was January 18, 2005 with the final design review in March 2009. The instrument passed its final acceptance in Europe on September 10, 2013 [7] MUSE was mounted on the Nasmyth platform of the fourth VLT Unit telescope on January 19, 2014, and saw first light on January 31, 2014.

Scientific goals

A simulation of how MUSE will see the globular cluster NGC 2808. This colour image has been created by first creating a simulated MUSE observation of the globular cluster and then extract three spectral regions from this data cube. Thus for each source in this image there is in truth an entire spectrum. Simulated MUSE observation of NGC 2808.jpg
A simulation of how MUSE will see the globular cluster NGC 2808. This colour image has been created by first creating a simulated MUSE observation of the globular cluster and then extract three spectral regions from this data cube. Thus for each source in this image there is in truth an entire spectrum.

Stars and resolved stellar populations

MUSE has a field of view that is well-matched to a number of objects in the Milky Way, such as globular clusters and planetary nebulae. The high spatial resolution and sampling will enable MUSE to simultaneously observe the spectra of thousands of stars in one shot in dense regions such as globular clusters. In star-forming regions, with a mixture of ionised gas and stars, MUSE will provide information both on the stellar and nebular content across this region.

Lyman-alpha emitters

A key goal of the design of MUSE was to be able to study the progenitors of normal nearby galaxies out to redshifts z > 6. These sources can be extremely faint, in which case they can only be detected using through the emission in the Lyman-alpha emission line, such galaxies are frequently referred to as Lyman-alpha emitters.

A common way to study such sources is to use narrow-band imaging, [8] but this technique can only survey a very narrow redshift range at a time – set by the width of the filter. In addition this method is not as sensitive as direct spectroscopic studies because the width of the filter is wider than the typical width of an emission line.

Since MUSE is a spectrograph with a 1'x1' field of view, it can be used to search for emission line sources over a wide range in redshift (z = 2.9–6.65 for Lyman-alpha) at the same time. It is expected that the instrument will be used for exposures of up to 100 hours, in which case it should reach a limiting flux of 3x10−19 erg/s/cm2 which is an order of magnitude fainter than current narrow-band imaging surveys.

MUSE views the strange galaxy NGC 4650A MUSE views the strange galaxy NGC 4650A.jpg
MUSE views the strange galaxy NGC 4650A

Galaxy evolution

MUSE will be a powerful instrument for studying the dynamical properties of galaxies from the nearby Universe out to at least a redshift of 1.4, after which the [O II] forbidden emission line at 372.7 nm disappears off the red end of the spectrograph.

At low redshift MUSE will provide two-dimensional maps of the kinematics and the stellar populations in all types of galaxies. It will build on and expand the science done with the SAURON instrument on the William Herschel Telescope, extending it to both larger radii and to more distant galaxies. With the narrow-field mode, MUSE will be able to zoom in on the region around the super-massive black hole at the centre of massive galaxies. It is hoped that this will help astronomers understand the process by which these giants formed - likely through a merging process whereby two black holes coalesce to form a more massive end product and at the same time perturbing the stellar orbits in the centre of the galaxy.

At higher redshift MUSE will provide the power to construct maps of the distribution of metals in galaxies and at the same time provide constraints on the dynamical structure of these objects. Combining this with environmental information due to the wide field of view (1 arcminute corresponds to 430 kilo-parsec at a redshift of 0.7) it will be possible to study how the properties of galaxies are affected by the environment they find themselves in a very powerful, and mostly new, way.

Science with the narrow field mode

MUSE will also have a high spatial resolution mode with a field of view of 7.5x7.5 arcsec and a spatial resolution of 0.042 arcsec at 750 nm. The main scientific use of this mode is for studying in detail more nearby systems such as the environment around supermassive black holes in nearby galaxies. In particular it will be possible to resolve the sphere of influence of the black holes in most massive galaxies out to the Virgo cluster and for the most massive galaxies also in the Coma cluster of galaxies.

Closer to home, MUSE will be able to study jets in nearby star forming regions and the surfaces of a range of solar system objects. This could for instance be used to carry out spectroscopic monitoring studies of volcanic activity on Io and spectroscopic studies of the atmosphere of Titan.

Technical

Intricate network of pipes surrounding the 24 spectrographs of the MUSE instrument. Muse the Medusa.jpg
Intricate network of pipes surrounding the 24 spectrographs of the MUSE instrument.
Instrument characteristics
Wide-Field Mode
Field of view1 x 1 arcmin
Spatial sampling0.2 x 0.2 arcsec
Spatial resolution at 0.75 μm (median seeing)0.46 arcsec (AO)
0.65 arcsec (non AO)
Sky coverage with AO70% at Galactic pole
99% at Galactic equator
Limiting magnitude in 80hIAB = 25.0 (Full resolution)
IAB = 26.7 (R=180 degraded resolution)
Limiting flux in 80h3.9 x 10−19 erg/s/cm2
Narrow-Field Mode
Field of view7.5 x 7.5 arcsec
Spatial sampling0.025 x 0.025 arcsec
Spatial resolution at 0.75 μm (median seeing)0.042 arcsec
Strehl ratio at 0.75 μm5% (10% goal)
Limiting magnitude in 1hRAB = 22.3
Limiting flux in 1h2.3 x 10−18 erg/s/cm2
Limit surface brightness in 1h (mag)RAB=17.3 arcsec−2
Source:[ citation needed ]

To meet the scientific aims of the instrument, MUSE has had to fulfill a number of requirements:

To achieve the latter two points, the spectrograph consists of 24 identical integral field units (IFU), hence reducing cost by replication. These have each excellent image quality and light in the instrument plan is slice up and sent to individual IFUs using an image slicer.

The spectrograph design has achieved an excellent image quality across the spectral bandwidth of MUSE with the tilt of the detector compensating for axial chromaticism. With such a design, expensive optical materials such as CaF2 are not needed, thus reducing the overall cost.

The throughput is kept high by using high quantum efficiency CCDs. There is also only one grating, a high transmission volume phase holographic grating. This has given a throughput that peaks above 50% around 700-800 nm and exceeds 40% across almost the entire wavelength range of the instrument.

The full instrument weighs close to eight metric tons and essentially fills the Nasmyth platform's volume of 50 m3. But due to the modular design, each of the 24 IFUs can be removed for maintenance or repair - in order to do this a special cradle was designed to safely remove and insert an IFU.

Adaptive optics interface

Neptune from the VLT with MUSE/GALACSI Narrow Field Mode adaptive optics. Neptune from the VLT with MUSE GALACSI Narrow Field Mode adaptive optics.tif
Neptune from the VLT with MUSE/GALACSI Narrow Field Mode adaptive optics.

In order to achieve the required boost in spatial resolution across the celestial sphere, MUSE makes use of the GALACSI [12] interface which is part of the Adaptive Optics Facility [13] on UT4 at VLT. All the adaptive optics (AO) components are all mounted in the Nasmyth derotator and a metrology system is used to ensure alignment of the AO system with MUSE. This is needed since MUSE is located on the Nasmyth platform.

Armed with the AO system, it is expected that MUSE will achieve a median spatial resolution of 0.46 arcseconds, or ~3 kpc at a redshift >3, across the 1'x1' field-of-view of the wide-field mode. In the narrow-field mode, the spatial resolution should reach 0.042 arcseconds at 750 nm, corresponding to ~3 pc resolution at the distance of Virgo Cluster of galaxies.

Data rates and management

Each exposure with MUSE will return a datafile with data from the 24 IFUs at 35 MB each - thus the total size of the raw datafile is 0.84 GB. After data reduction this will expand to a total of 3.2 GB per exposure as the data are translated into floating point values and an error estimate cube is produced. This means that observations that rely on many short exposures can produce very large datasets - easily producing 100 GB per night of fairly complex data.

Operation and results

Deep observations made with the MUSE spectrograph. Deep observations made with the MUSE spectrograph.tif
Deep observations made with the MUSE spectrograph.

[ needs update ]

Related Research Articles

<span class="mw-page-title-main">Very Large Telescope</span> Telescope in the Atacama Desert, Chile

The Very Large Telescope (VLT) is a facility operated by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures 8.2 meters in diameter. These optical telescopes, named Antu, Kueyen, Melipal, and Yepun, are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with 1.8-meter apertures.

<span class="mw-page-title-main">Subaru Telescope</span> Japanese telescope and observatory

Subaru Telescope is the 8.2-metre (320 in) telescope of the National Astronomical Observatory of Japan, located at the Mauna Kea Observatory on Hawaii. It is named after the open star cluster known in English as the Pleiades. It had the largest monolithic primary mirror in the world from its commissioning until the Large Binocular Telescope opened in 2005.

<span class="mw-page-title-main">W. M. Keck Observatory</span> Astronomical observatory in Hawaii

The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and, when completed in 1993 and 1996, they were the largest optical reflecting telescopes in the world. They are currently the third and fourth largest.

<span class="mw-page-title-main">Hubble Deep Field</span> Multiple exposure image of deep space in the constellation Ursa Major

The Hubble Deep Field (HDF) is an image of a small region in the constellation Ursa Major, constructed from a series of observations by the Hubble Space Telescope. It covers an area about 2.6 arcminutes on a side, about one 24-millionth of the whole sky, which is equivalent in angular size to a tennis ball at a distance of 100 metres. The image was assembled from 342 separate exposures taken with the Space Telescope's Wide Field and Planetary Camera 2 over ten consecutive days between December 18 and 28, 1995.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">VLT Survey Telescope</span> Telescope in the Atacama Desert, Chile

The VLT Survey Telescope (VST) is a telescope located at ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed in an enclosure immediately adjacent to the four Very Large Telescope (VLT) Unit Telescopes on the summit of Cerro Paranal. The VST is a wide-field survey telescope with a field of view twice as broad as the full Moon. It is the largest telescope in the world designed to exclusively survey the sky in visible light.

<span class="mw-page-title-main">VISTA (telescope)</span>

The VISTA is a wide-field reflecting telescope with a 4.1 metre mirror, located at the Paranal Observatory in Chile. It is operated by the European Southern Observatory and started science operations in December 2009. VISTA was conceived and developed by a consortium of universities in the United Kingdom led by Queen Mary University of London and became an in-kind contribution to ESO as part of the UK's accession agreement, with the subscription paid by the UK Science and Technology Facilities Council (STFC).

<span class="mw-page-title-main">New Technology Telescope</span>

The New Technology Telescope or NTT is a 3.58-metre Ritchey–Chrétien telescope operated by the European Southern Observatory. It began operations in 1989. It is located in Chile at the La Silla Observatory and was an early pioneer in the use of active optics. The telescope and its enclosure were built to a revolutionary design for optimal image quality.

<span class="mw-page-title-main">Galileo National Telescope</span>

The Galileo National Telescope, is a 3.58-meter Italian telescope, located at the Roque de los Muchachos Observatory on the island of La Palma in the Canary Islands, Spain. The TNG is operated by the "Fundación Galileo Galilei, Fundación Canaria", a non-profit institution, on behalf of the Italian National Institute of Astrophysics (INAF). The telescope saw first light in 1998 and is named after the Italian Renaissance astronomer Galileo Galilei.

<span class="mw-page-title-main">Advanced Camera for Surveys</span> Installed on HST March 2002

The Advanced Camera for Surveys (ACS) is a third-generation axial instrument aboard the Hubble Space Telescope (HST). The initial design and scientific capabilities of ACS were defined by a team based at Johns Hopkins University. ACS was assembled and tested extensively at Ball Aerospace & Technologies Corp. and the Goddard Space Flight Center and underwent a final flight-ready verification at the Kennedy Space Center before integration in the cargo bay of the Columbia orbiter. It was launched on March 1, 2002, as part of Servicing Mission 3B (STS-109) and installed in HST on March 7, replacing the Faint Object Camera (FOC), the last original instrument. ACS cost US$86 million at that time.

<span class="mw-page-title-main">Redshift survey</span>

In astronomy, a redshift survey is a survey of a section of the sky to measure the redshift of astronomical objects: usually galaxies, but sometimes other objects such as galaxy clusters or quasars. Using Hubble's law, the redshift can be used to estimate the distance of an object from Earth. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure detailed statistical properties of the large-scale structure of the universe. In conjunction with observations of early structure in the cosmic microwave background, these results can place strong constraints on cosmological parameters such as the average matter density and the Hubble constant.

<span class="mw-page-title-main">Cosmic Origins Spectrograph</span> Instrument installed on the Hubble Space Telescope

The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.

<span class="mw-page-title-main">Leibniz Institute for Astrophysics Potsdam</span> Research facility for astrophysics

Leibniz Institute for Astrophysics Potsdam (AIP) is a German research institute. It is the successor of the Berlin Observatory founded in 1700 and of the Astrophysical Observatory Potsdam (AOP) founded in 1874. The latter was the world's first observatory to emphasize explicitly the research area of astrophysics. The AIP was founded in 1992, in a re-structuring following the German reunification.

Advanced Telescope for High-ENergy Astrophysics (Athena) is an X-ray observatory mission selected by European Space Agency (ESA) within its Cosmic Vision program to address the Hot and Energetic Universe scientific theme. Athena will operate in the energy range of 0.2–12 keV and will offer spectroscopic and imaging capabilities exceeding those of currently operating X-ray astronomy satellites – e.g. the Chandra X-ray Observatory and XMM-Newton – by at least one order of magnitude on several parameter spaces simultaneously.

<span class="mw-page-title-main">Integral field spectrograph</span> Spectrograph equipped with an integral field unit

Integral field spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains (0.32 μm – 24 μm) to get from a single exposure spatially resolved spectra in a bi-dimensional region. The name originates from the fact that the measurements result from integrating the light on multiple sub-regions of the field. Developed at first for the study of astronomical objects, this technique is now also used in many other fields, such bio-medical science and Earth remote sensing. Integral field spectrography is part of the broader category of snapshot hyperspectral imaging techniques, itself a part of hyperspectral imaging.

<span class="mw-page-title-main">NIRSpec</span> Spectrograph on the James Webb Space Telescope

The NIRSpec is one of the four scientific instruments flown on the James Webb Space Telescope (JWST). The JWST is the follow-on mission to the Hubble Space Telescope (HST) and is developed to receive more information about the origins of the universe by observing infrared light from the first stars and galaxies. In comparison to HST, its instruments will allow looking further back in time and will study the so-called Dark Ages during which the universe was opaque, about 150 to 800 million years after the Big Bang.

<span class="mw-page-title-main">Lyman-alpha blob 1</span> Lyman-alpha blob in the constellation of Aquarius

Lyman-alpha blob 1 (LAB-1) is a giant cosmic cloud of gas located in the constellation of Aquarius, approximately 11.5 billion light-years from Earth with a redshift (z) of 3.09. It was discovered unexpectedly in 2000 by Charles Steidel and colleagues, who were surveying for high-redshift galaxies using the 200 inch Hale telescope at the Palomar Observatory. The researchers had been investigating the abundance of galaxies in the young Universe when they came across two objects which would become known as Lyman-alpha blobs—huge concentrations of gases emitting the Lyman-alpha emission line of hydrogen.

<span class="mw-page-title-main">Spectro-Polarimetric High-Contrast Exoplanet Research</span>

Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT-SPHERE) is an adaptive optics system and coronagraphic facility at the Very Large Telescope (VLT). It provides direct imaging as well as spectroscopic and polarimetric characterization of exoplanet systems. The instrument operates in the visible and near infrared, achieving exquisite image quality and contrast over a small field of view around bright targets.

<span class="mw-page-title-main">Visible Multi Object Spectrograph</span> Wide field imager and multi-object spectrograph at the VLT in Chile

The Visible Multi-Object Spectrograph (VIMOS) is a wide field imager and a multi-object spectrograph installed at the European Southern Observatory's Very Large Telescope (VLT), in Chile. The instrument used for deep astronomical surveys delivers visible images and spectra of up to 1,000 galaxies at a time. VIMOS images four rectangular areas of the sky, 7 by 8 arcminutes each, with gaps of 2 arcminutes between them. Its principal investigator was Olivier Le Fèvre.

References

  1. 1 2 3 "ESO - Overview".
  2. MUSE instrument development page at ESO.
  3. "Highlights from the Multi Unit Spectroscopic Explorer (MUSE)". doi:10.1117/2.3201407.15.{{cite journal}}: Cite journal requires |journal= (help)
  4. "ESO - Instrument Description". www.eso.org. Retrieved 2023-08-31.
  5. MUSE blog entry for first light Archived 2014-02-02 at the Wayback Machine
  6. "A MUSE for ESO's Very Large Telescope". ESO Announcement. Retrieved 12 September 2013.
  7. ESO's web-page for MUSE
  8. Kashikawa et al. (2006) "The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field"
  9. "First Light for MUSE". ESO. Retrieved 12 March 2014.
  10. "MUSE: New Free Film about ESO's Cosmic Time Machine". www.eso.org. Retrieved 11 May 2017.
  11. "Supersharp Images from New VLT Adaptive Optics". www.eso.org. 18 July 2018. Retrieved 18 July 2018.
  12. "Eso - Galacsi".
  13. "ESO - AO Instruments".
  14. "A Universe Aglow - MUSE spectrograph reveals that nearly the entire sky in the early Universe is glowing with Lyman-alpha emission". www.eso.org. Retrieved 1 October 2018.