Multicast lightpaths

Last updated
Multicast connections affected by fiber cut Multicast L2.svg
Multicast connections affected by fiber cut

A multicast session requires a "point-to-multipoint" connection from a source node to multiple destination nodes. [1] The source node is known as the root. The destination nodes are known as leaves. In the modern era, it is important to protect multicast connections in an optical mesh network. Recently, multicast applications have gained popularity as they are important to protecting critical sessions against failures such as fiber cuts, hardware faults, and natural disasters.

Contents

Multicast applications

Multicast applications may include multimedia, medical imaging, digital audio, HDTV, video conferencing, interactive distance learning, and distributed games.

Multi-casting switch architecture

In order to support multi-casting, the WDM network requires multicast-capable wavelength-routing switches at the network node. These switches are capable of replicating data streams from one input port to multiple output ports. There are two types of switch architectures that are usually used: [2]

Multicast lightpaths protection

Multicast lightpaths protection refers to the network's prompt response to reroute traffic onto an alternative path in the event of a failure.

In a dedicated backup path, resources are exclusively allocated to a single connection and not shared with other connections along the backup path.

In a shared backup path, resources may be shared between multiple backup paths for different connections.

Protecting multicast sessions

Link disjoint backup tree. Multicast L1.png
Link disjoint backup tree.

Several protection schemes have been proposed in the literature to protect the multicast connections. The simplest idea to protect the multicast tree from single fiber failure is to compute a link disjoint backup tree. In a link disjoint backup tree, a multicast session from source node F to destination nodes A, B, C, D and E forms a light tree. F is the root and the remaining nodes are the leaves. The primary light tree is shown in solid lines and (directed-link-disjoint) the back up light tree is shown in dotted lines carrying traffic from source node to destinations. [2]

The ring based approach is also proposed to protect multicast session. [3]

The segment protection scheme is another way to protect multicast connections. [4] A segment in a multicast tree is defined as the sequence of edges from the source or any splitting node (on a tree) to a leaf node or to a downstream splitting node. A destination node is always considered as a segment end node because it is either a leaf node in a tree or a splitting node.

A multicast protection scheme through spanning paths is also one of the key approaches to protecting multicast sessions. [5] [6] [7] [8] A spanning path in a multicast tree is defined as a path from a leaf node to any other leaf node in the light tree. The scheme derives backup paths for every spanning path in the multicast tree.

Concept of DBPP and SBPP on multicast connections

Dedicated backup path protection (DBPP) for multicast connections: Depending on the network topology, a dedicated backup path concept can be applied for multicast traffic. A dedicated backup path protection is a multicast session from source node F to destination nodes A, B, C, D, and E which form the light tree. A dedicated backup path protection scheme can be applied to protect multicast traffic from link failure. This is easy to achieve with one-to-one protection where the dedicated backup path is already provisioned and traffic is simply switched to it on failure.

Dedicated backup path protection Mesh Dedicated Backup Path Protection.png
Dedicated backup path protection
Shared backup path protection before failure Mesh Shared Backup Path Protection Before Failure.png
Shared backup path protection before failure
Shared backup path protection after failure Mesh Shared Backup Path Protection After Failure.png
Shared backup path protection after failure

Shared backup path protection (SBPP) for multicast connections: The SBPP technique can be used for multicast connections at the optical layer because of its resource efficiency, due to the fact that the backup paths can share wavelength channels on links while their corresponding primary paths are link disjoint. Paths can share links with working paths and protection paths of other leaves. In a shared backup path protection before failure FE and FA are primary paths. The optical line is reserved for shared protection of both FE and FA.

Path protection technique for multicast connections (multiple unicast connections):

Key featuresDedicated backup path protectionShared backup path protection
ReliabilityHighly reliableLess reliable
Cross connectCross connect established before failureCross connect established after failure
CostCost is higher than SBPPLess than DBPP


Importance

Protection schemes for multicast connections are important for the following reasons:

  1. Loss of connectivity: network failures such as fiber cuts in a communication network occur often enough to cause service disruption, and lead to significant information loss in the absence of adequate backup mechanisms.
  2. SLA: it is important for providers to follow SLAs and guaranteed service. It is important to protect multicast connections to maintain the SLA.
  3. Business reputation: network availability is one of the key aspects of multicasting connections. A company loses money and reputation when its network fails.

See also

Notes

  1. L. H. Sahasrabuddhe and B. Mukherjee, "Light-trees: Optical multi-casting for improved performance in wavelength-routed networks," IEEE Commun. Mag., vol. 37, pp. 67–73, Feb. 1999.
  2. 1 2 N. Singhal and B. Mukherjee, "Protecting multicast sessions in WDM optical mesh networks," J. Lightwave Technol., vol. 21, Apr. 2003
  3. C. Boworntummarat, L. Wuttisittikulkij, and S. Segkhoonthod, "Lighttree based Protection Strategies for Multicast Traffic in Transport WDM Mesh Networks with Multi-fiber Systems", in Proc. IEEE ICC'04, June 2004, vol. 3, pp.1791–1795
  4. N. Singhal, L. sahasrabuddhe, and B. Mukherjee, "Provisioning of Survivable Multicast Sessions Against Single Link Failures in Optical WDM Mesh Networks", IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 11, pp. 2587–2594, Nov. 2003.
  5. N. Singhal, C. Ou, and B. Mukherjee, "Shared Protection for Multicast Sessions in Mesh Networks", in Proc. IEEE OFC'05, pp. 823-825, 2005
  6. N. Singhal, C. Ou, B. Mukherjee, "Cross-sharing vs. Self-sharing Trees for Protecting Multicast Sessions in Mesh Networks", Journal of Computer Networks, vol 50, no. 2, pp. 200-106, Feb. 2006.
  7. H. Luo, H. Yu, L. Li, and S. Wang, "On Protecting Dynamic Multicast Sessions in Survivable Mesh WDM Networks", in Proc. OFC'2006
  8. H. Luo, L. Li, and H. Yu, "Algorithm for Protecting Light-trees in Survivable Mesh Wavelength-division-multiplexing Networks", Journal of Optical Networking, vol. 5, no. 12, pp. 1071–1083, 2006.

Related Research Articles

<span class="mw-page-title-main">Synchronous optical networking</span> Standardized protocol

Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) are standardized protocols that transfer multiple digital bit streams synchronously over optical fiber using lasers or highly coherent light from light-emitting diodes (LEDs). At low transmission rates data can also be transferred via an electrical interface. The method was developed to replace the plesiochronous digital hierarchy (PDH) system for transporting large amounts of telephone calls and data traffic over the same fiber without the problems of synchronization.

Circuit switching is a method of implementing a telecommunications network in which two network nodes establish a dedicated communications channel (circuit) through the network before the nodes may communicate. The circuit guarantees the full bandwidth of the channel and remains connected for the duration of the communication session. The circuit functions as if the nodes were physically connected as with an electrical circuit.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Traffic grooming is the process of grouping many small telecommunications flows into larger units, which can be processed as single entities. For example, in a network using both time-division multiplexing (TDM) and wavelength-division multiplexing (WDM), two flows which are destined for a common node can be placed on the same wavelength, allowing them to be dropped by a single optical add-drop multiplexer. Often the objective of grooming is minimizing the cost of the network. The cost of line terminating equipment (LTE) is the most dominant component in an optical WDM network's cost. Thus grooming typically involves minimizing the usage of ADMs.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers. Many fiber ISPs prefer this technology.

The routing and wavelength assignment (RWA) problem is an optical networking problem with the goal of maximizing the number of optical connections.

<span class="mw-page-title-main">Optical add-drop multiplexer</span> Device used to route channels in optical communication systems

An optical add-drop multiplexer (OADM) is a device used in wavelength-division multiplexing systems for multiplexing and routing different channels of light into or out of a single-mode fiber (SMF). This is a type of optical node, which is generally used for the formation and the construction of optical telecommunications networks. "Add" and "drop" here refer to the capability of the device to add one or more new wavelength channels to an existing multi-wavelength WDM signal, and/or to drop (remove) one or more channels, passing those signals to another network path. An OADM may be considered to be a specific type of optical cross-connect.

In a telecommunication network, a ring network affords fault tolerance to the network because there are two paths between any two nodes on the network. Ring protection is the system used to assure communication continues in the event of failure of one of the paths. There are two widely used protection architectures: 1+1 protection and 1:1 protection.

In telecommunications, subnetwork connection protection (SNCP), is a type of protection mechanism associated with synchronous optical networks such as synchronous digital hierarchy (SDH).

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

High-availability Seamless Redundancy (HSR) is a network protocol for Ethernet that provides seamless failover against failure of any single network component. PRP and HSR are independent of the application-protocol and can be used by most Industrial Ethernet protocols in the IEC 61784 suite. HSR does not cover the failure of end nodes, but redundant nodes can be connected via HSR.

<span class="mw-page-title-main">Optical mesh network</span> Optical network using a mesh topology

An optical mesh network is a type of optical telecommunications network employing wired fiber-optic communication or wireless free-space optical communication in a mesh network architecture.

Shared risk resource group is a concept in optical mesh network routing that different networks may suffer from a common failure if they share a common risk or a common SRG. SRG is not limited to Optical mesh networks: SRGs are also used in MPLS, IP networks, and synchronous optical networks.

Link protection is designed to safeguard networks from failure. Failures in high-speed networks have always been a concern of utmost importance. A single fiber cut can lead to heavy losses of traffic and protection-switching techniques have been used as the key source to ensure survivability in networks. Survivability can be addressed in many layers in a network and protection can be performed at the physical layer, Layer 2 and Layer 3 (IP).

Path protection in telecommunications is an end-to-end protection scheme used in connection oriented circuits in different network architectures to protect against inevitable failures on service providers’ network that might affect the services offered to end customers. Any failure occurred at any point along the path of a circuit will cause the end nodes to move/pick the traffic to/from a new route. Finding paths with protection, especially in elastic optical networks, was considered a difficult problem, but an efficient and optimal algorithm was proposed.

Segment protection is a type of backup technique that can be used in most networks. It can be implemented as a dedicated backup or as a shared backup protection. Overlapping segments and non-overlapping segments are allowed; each providing different advantages.

The p-Cycle protection scheme is a technique to protect a mesh network from a failure of a link, with the benefits of ring like recovery speed and mesh-like capacity efficiency, similar to that of a shared backup path protection (SBPP). p-Cycle protection was invented in late 1990s, with research and development done mostly by Wayne D. Grover, and D. Stamatelakis.

Fast automatic restoration (FASTAR) is an automated fast response system developed and deployed by American Telephone & Telegraph (AT&T) in 1992 for the centralized restoration of its digital transport network. FASTAR automatically reroutes circuits over a spare protection capacity when a fiber-optic cable failure is detected, hence increasing service availability and reducing the impact of the outages in the network. Similar in operation is real-time restoration (RTR), developed and deployed by MCI and used in the MCI network to minimize the effects of a fiber cut.

In optical networking, a lightpath is a path between two nodes in an optical network between which light passes through unmodified.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.