Multiple displacement amplification

Last updated

Multiple displacement amplification (MDA) is a DNA amplification technique. This method can rapidly amplify minute amounts of DNA samples to a reasonable quantity for genomic analysis. The reaction starts by annealing random hexamer primers to the template: DNA synthesis is carried out by a high fidelity enzyme, preferentially Φ29 DNA polymerase. Compared with conventional PCR amplification techniques, MDA does not employ sequence-specific primers but amplifies all DNA, generates larger-sized products with a lower error frequency, and works at a constant temperature. MDA has been actively used in whole genome amplification (WGA) and is a promising method for application to single cell genome sequencing and sequencing-based genetic studies.

Contents

Background

Many biological and forensic cases involving genetic analysis require sequencing of DNA from minute amounts of sample, such as DNA from uncultured single cells or trace amounts of tissue collected from crime scenes. Conventional Polymerase Chain Reaction (PCR)-based DNA amplification methods require sequence-specific oligonucleotide primers and heat-stable (usually Taq) polymerase, and can be used to generate significant amounts of DNA from minute amounts of DNA. However, this is not sufficient for modern techniques which use sequencing-based DNA analysis. Therefore, a more efficient non-sequence-specific method to amplify minute amounts of DNA is necessary, especially in single-cell genomic studies.

Materials

MDA reaction steps MDA reaction 1.JPG
MDA reaction steps

Phi 29 DNA polymerase

Bacteriophage Φ29 DNA polymerase is a high-processivity enzyme that can produce DNA amplicons greater than 70 kilobase pairs. [1] Its high fidelity and 3’5' proofreading activity reduces the amplification error rate to 1 in 106107 bases compared to conventional Taq polymerase with a reported error rate of 1 in 9,000. [2] The reaction can be carried out at a moderate isothermal condition of 30 °C and therefore does not require a thermocycler. It has been actively used in cell-free cloning, which is the enzymatic method of amplifying DNA in vitro without cell culturing and DNA extraction. The large fragment of Bst DNA polymerase is also used in MDA, but Ф29 is generally preferred due to its sufficient product yield and proofreading activity. [3]

Hexamer primers

Hexamer primers are sequences composed of six random nucleotides. For MDA applications, these primers are usually thiophosphate-modified at their 3’ end to convey resistance to the 3’5’ exonuclease activity of Ф29 DNA polymerase. MDA reactions start with the annealing of such primers to the DNA template followed by polymerase-mediated chain elongation. Increasing numbers of primer annealing events happen along the amplification reaction.

Reaction

The amplification reaction initiates when multiple primer hexamers anneal to the template. When DNA synthesis proceeds to the next starting site, the polymerase displaces the newly produced DNA strand and continues its strand elongation. The strand displacement generates a newly synthesized single-stranded DNA template for more primers to anneal. Further primer annealing and strand displacement on the newly synthesized template results in a hyper-branched DNA network. The sequence debranching during amplification results in a high yield of the products. To separate the DNA branching network, S1 nucleases are used to cleave the fragments at displacement sites. The nicks on the resulting DNA fragments are repaired by DNA polymerase I.

Single Cell Genome Sequencing (MDA).JPG. Single cell sequencing (MDA).JPG
Single Cell Genome Sequencing (MDA).JPG.

Product quality

MDA can generate 12 μg of DNA from single cell with genome coverage of up to 99%. [4] Products also have lower error rate and larger sizes compared to PCR based Taq amplification. [4] [5]

General work flow of MDA: [6]

  1. Sample preparation: Samples are collected and diluted in the appropriate reaction buffer (Ca2+ and Mg2+ free). Cells are lysed with alkaline buffer.
  2. Condition: The MDA reaction with Ф29 polymerase is carried out at 30 °C. The reaction usually takes about 2.53 hours.
  3. End of reaction: Inactivate enzymes at 65 °C before collection of the amplified DNA products
  4. DNA products can be purified with commercial purification kit.

Advantages

MDA generates sufficient yield of DNA products. It is a powerful tool of amplifying DNA molecules from samples, such as uncultured microorganism or single cells to the amount that would be sufficient for sequencing studies. The large size of MDA-amplified DNA products also provides desirable sample quality for identifying the size of polymorphic repeat alleles. Its high fidelity also makes it reliable to be used in the single-nucleotide polymorphism (SNP) allele detection. Due to its strand displacement during amplification, the amplified DNA has sufficient coverage of the source DNA molecules, which provides a high-quality product for genomic analysis. The products of displaced strands can be subsequently cloned into vectors to construct library for subsequent sequencing reactions.

Limitations

Allelic dropout (ADO)

ADO is defined as the random non-amplification of one of the alleles present in a heterozygous sample. Some studies have reported the ADO rate of the MDA products to be 060%. [7] This drawback decreases the accuracy of genotyping of single sample and misdiagnosis in other MDA involved applications. ADO appears to be independent of the fragment sizes and has been reported to have a similar rate in other single-cell techniques. Possible solutions are the use of different lysis conditions or to carry out multiple rounds of amplifications from the diluted MDA products since PCR mediated amplification from cultured cells has been reported to give lower ADO rates.

Preferential amplification

'Preferential amplification' is over-amplification of one of the alleles in comparison to the other. Most studies on MDA have reported this issue. The amplification bias is currently observed to be random. It might affect the analysis of small stretches of genomic DNA in identifying Short Tandem Repeats (STR) alleles.

Primer-primer interactions

Endogenous template-independent primer-primer interaction is due to the random design of hexamer primers. One possible solution is to design constrained-randomized hexanucleotide primers that do not cross-hybridize.

Applications

Single cell genome sequencing

Single cells of uncultured bacteria, archaea and protists, as well as individual viral particles and single fungal spores have been sequenced with the help of MDA. [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18]

The ability to sequence individual cells is also useful in combating human disease. Genomes from single human embryonic cells have been successfully amplified for sequencing using MDA, allowing preimplantation genetic diagnosis (PGD): screening for genetic health issues in an early-stage embryo before implantation. [19] Diseases with heterogeneous properties, such as cancer, also benefit from MDA-based genome sequencing's ability to study mutations in individual cells.

The MDA products from a single cell have also been successfully used in array-comparative genomic hybridization experiments, which usually require a relatively large amount of amplified DNA.

Chromatin immunoprecipitation

Chromatin Immunoprecipitation results in production of complex mixtures of relatively short DNA fragments, which is challenging to amplify with MDA without causing a bias in the fragment representation. A method to circumvent this problem was proposed, which is based on conversion of these mixtures to circular concatemers using ligation, followed by Φ29 DNA polymerase-mediated MDA. [20]

Forensic analysis

The trace amount of samples collected from crime scenes can be amplified by MDA to the quantity that is enough for forensic DNA analysis, which is commonly used in identifying victims and suspects.

See also

Related Research Articles

<span class="mw-page-title-main">Polymerase chain reaction</span> Laboratory technique to multiply a DNA sample for study

The polymerase chain reaction (PCR) is a method widely used to make millions to billions of copies of a specific DNA sample rapidly, allowing scientists to amplify a very small sample of DNA sufficiently to enable detailed study. PCR was invented in 1983 by American biochemist Kary Mullis at Cetus Corporation. Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

<span class="mw-page-title-main">Primer (molecular biology)</span> Short strand of RNA or DNA that serves as a starting point for DNA synthesis

A primer is a short, single-stranded nucleic acid used by all living organisms in the initiation of DNA synthesis. A synthetic primer may also be referred to as an oligo, short for oligonucleotide. DNA polymerase enzymes are only capable of adding nucleotides to the 3’-end of an existing nucleic acid, requiring a primer be bound to the template before DNA polymerase can begin a complementary strand. DNA polymerase adds nucleotides after binding to the RNA primer and synthesizes the whole strand. Later, the RNA strands must be removed accurately and replace them with DNA nucleotides forming a gap region known as a nick that is filled in using an enzyme called ligase. The removal process of the RNA primer requires several enzymes, such as Fen1, Lig1, and others that work in coordination with DNA polymerase, to ensure the removal of the RNA nucleotides and the addition of DNA nucleotides. Living organisms use solely RNA primers, while laboratory techniques in biochemistry and molecular biology that require in vitro DNA synthesis usually use DNA primers, since they are more temperature stable. Primers can be designed in laboratory for specific reactions such as polymerase chain reaction (PCR). When designing PCR primers, there are specific measures that must be taken into consideration, like the melting temperature of the primers and the annealing temperature of the reaction itself. Moreover, the DNA binding sequence of the primer in vitro has to be specifically chosen, which is done using a method called basic local alignment search tool (BLAST) that scans the DNA and finds specific and unique regions for the primer to bind.

In genetics and biochemistry, sequencing means to determine the primary structure of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succinctly summarizes much of the atomic-level structure of the sequenced molecule.

In molecular biology, an amplicon is a piece of DNA or RNA that is the source and/or product of amplification or replication events. It can be formed artificially, using various methods including polymerase chain reactions (PCR) or ligase chain reactions (LCR), or naturally through gene duplication. In this context, amplification refers to the production of one or more copies of a genetic fragment or target sequence, specifically the amplicon. As it refers to the product of an amplification reaction, amplicon is used interchangeably with common laboratory terms, such as "PCR product."

<span class="mw-page-title-main">DNA sequencing</span> Process of determining the nucleic acid sequence

DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery.

<span class="mw-page-title-main">Sanger sequencing</span> Method of DNA sequencing developed in 1977

Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederick Sanger and colleagues in 1977, it became the most widely used sequencing method for approximately 40 years. An automated instrument using slab gel electrophoresis and fluorescent labels was first commercialized by Applied Biosystems in March 1987. Later, automated slab gels were replaced with automated capillary array electrophoresis. More recently, higher volume Sanger sequencing has been replaced by next generation sequencing methods, especially for large-scale, automated genome analyses. However, the Sanger method remains in wide use for smaller-scale projects and for validation of deep sequencing results. It still has the advantage over short-read sequencing technologies in that it can produce DNA sequence reads of > 500 nucleotides and maintains a very low error rate with accuracies around 99.99%. Sanger sequencing is still actively being used in efforts for public health initiatives such as sequencing the spike protein from SARS-CoV-2 as well as for the surveillance of norovirus outbreaks through the Center for Disease Control and Prevention's (CDC) CaliciNet surveillance network.

<i>Taq</i> polymerase Thermostable form of DNA polymerase I used in polymerase chain reaction

Taq polymerase is a thermostable DNA polymerase I named after the thermophilic eubacterial microorganism Thermus aquaticus, from which it was originally isolated by Chien et al. in 1976. Its name is often abbreviated to Taq or Taq pol. It is frequently used in the polymerase chain reaction (PCR), a method for greatly amplifying the quantity of short segments of DNA.

<span class="mw-page-title-main">Rolling circle replication</span> DNA synthesis technique

Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.

SNP genotyping is the measurement of genetic variations of single nucleotide polymorphisms (SNPs) between members of a species. It is a form of genotyping, which is the measurement of more general genetic variation. SNPs are one of the most common types of genetic variation. An SNP is a single base pair mutation at a specific locus, usually consisting of two alleles. SNPs are found to be involved in the etiology of many human diseases and are becoming of particular interest in pharmacogenetics. Because SNPs are conserved during evolution, they have been proposed as markers for use in quantitative trait loci (QTL) analysis and in association studies in place of microsatellites. The use of SNPs is being extended in the HapMap project, which aims to provide the minimal set of SNPs needed to genotype the human genome. SNPs can also provide a genetic fingerprint for use in identity testing. The increase of interest in SNPs has been reflected by the furious development of a diverse range of SNP genotyping methods.

<span class="mw-page-title-main">Bisulfite sequencing</span> Lab procedure detecting 5-methylcytosines in DNA

Bisulfitesequencing (also known as bisulphite sequencing) is the use of bisulfite treatment of DNA before routine sequencing to determine the pattern of methylation. DNA methylation was the first discovered epigenetic mark, and remains the most studied. In animals it predominantly involves the addition of a methyl group to the carbon-5 position of cytosine residues of the dinucleotide CpG, and is implicated in repression of transcriptional activity.

The polymerase chain reaction (PCR) is a commonly used molecular biology tool for amplifying DNA, and various techniques for PCR optimization which have been developed by molecular biologists to improve PCR performance and minimize failure.

<span class="mw-page-title-main">Nucleic acid test</span> Group of techniques to detect a particular nucleic acid sequence

A nucleic acid test (NAT) is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism, often a virus or bacterium that acts as a pathogen in blood, tissue, urine, etc. NATs differ from other tests in that they detect genetic materials rather than antigens or antibodies. Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and/or antibodies requires time for them to start appearing in the bloodstream. Since the amount of a certain genetic material is usually very small, many NATs include a step that amplifies the genetic material—that is, makes many copies of it. Such NATs are called nucleic acid amplification tests (NAATs). There are several ways of amplification, including polymerase chain reaction (PCR), strand displacement assay (SDA), transcription mediated assay (TMA), and loop-mediated isothermal amplification (LAMP).

The versatility of polymerase chain reaction (PCR) has led to modifications of the basic protocol being used in a large number of variant techniques designed for various purposes. This article summarizes many of the most common variations currently or formerly used in molecular biology laboratories; familiarity with the fundamental premise by which PCR works and corresponding terms and concepts is necessary for understanding these variant techniques.

Φ29 DNA polymerase is an enzyme from the bacteriophage Φ29. It is being increasingly used in molecular biology for multiple displacement DNA amplification procedures, and has a number of features that make it particularly suitable for this application. It was discovered and characterized by Spanish scientists Luis Blanco and Margarita Salas.

Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged between 1993 and 1998 and have been commercially available since 2005. These technologies use miniaturized and parallelized platforms for sequencing of 1 million to 43 billion short reads per instrument run.

<span class="mw-page-title-main">Illumina dye sequencing</span> DNA sequencing method

Illumina dye sequencing is a technique used to determine the series of base pairs in DNA, also known as DNA sequencing. The reversible terminated chemistry concept was invented by Bruno Canard and Simon Sarfati at the Pasteur Institute in Paris. It was developed by Shankar Balasubramanian and David Klenerman of Cambridge University, who subsequently founded Solexa, a company later acquired by Illumina. This sequencing method is based on reversible dye-terminators that enable the identification of single nucleotides as they are washed over DNA strands. It can also be used for whole-genome and region sequencing, transcriptome analysis, metagenomics, small RNA discovery, methylation profiling, and genome-wide protein-nucleic acid interaction analysis.

Multiple Annealing and Looping Based Amplification Cycles (MALBAC) is a quasilinear whole genome amplification method. Unlike conventional DNA amplification methods that are non-linear or exponential, MALBAC utilizes special primers that allow amplicons to have complementary ends and therefore to loop, preventing DNA from being copied exponentially. This results in amplification of only the original genomic DNA and therefore reduces amplification bias. MALBAC is “used to create overlapped shotgun amplicons covering most of the genome”. For next generation sequencing, MALBAC is followed by regular PCR which is used to further amplify amplicons.

Single-cell sequencing examines the nucleic acid sequence information from individual cells with optimized next-generation sequencing technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment. For example, in cancer, sequencing the DNA of individual cells can give information about mutations carried by small populations of cells. In development, sequencing the RNAs expressed by individual cells can give insight into the existence and behavior of different cell types. In microbial systems, a population of the same species can appear genetically clonal. Still, single-cell sequencing of RNA or epigenetic modifications can reveal cell-to-cell variability that may help populations rapidly adapt to survive in changing environments.

<span class="mw-page-title-main">Surveyor nuclease assay</span>

Surveyor nuclease assay is an enzyme mismatch cleavage assay used to detect single base mismatches or small insertions or deletions (indels).

G&T-seq is a novel form of single cell sequencing technique allowing one to simultaneously obtain both transcriptomic and genomic data from single cells, allowing for direct comparison of gene expression data to its corresponding genomic data in the same cell...

References

  1. Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M (1989). "Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication". The Journal of Biological Chemistry. 264 (15): 8935–40. doi: 10.1016/S0021-9258(18)81883-X . PMID   2498321.
  2. Tindall KR and Kunkel TA (1988). "Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase". Biochemistry. 27 (16): 6008–13. doi:10.1021/bi00416a027. PMID   2847780.
  3. Hutchison, C. A.; Smith, HO; Pfannkoch, C; Venter, JC (2005). "Cell-free cloning using φ29 DNA polymerase". Proceedings of the National Academy of Sciences. 102 (48): 17332–6. Bibcode:2005PNAS..10217332H. doi: 10.1073/pnas.0508809102 . PMC   1283157 . PMID   16286637.
  4. 1 2 Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR (2004). "Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification". Nucleic Acids Research. 32 (9): e71. doi:10.1093/nar/gnh069. PMC   419624 . PMID   15150323.
  5. Esteban JA, Salas M, Blanco L (1993). "Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization". The Journal of Biological Chemistry. 268 (4): 2719–26. doi: 10.1016/S0021-9258(18)53833-3 . PMID   8428945.
  6. Spits; Le Caignec, C; De Rycke, M; Van Haute, L; Van Steirteghem, A; Liebaers, I; Sermon, K (2006). "Whole-genome multiple displacement amplification from single cells". Nature Protocols. 1 (4): 1965–70. doi:10.1038/nprot.2006.326. PMID   17487184. S2CID   33346321.
  7. Bradley, Ward, Yarborough (2012). "Allelic dropout rates in multiple displacement amplification". Applied Biomolecular Techniques. 84 (51): 341–362.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Zhang; Martiny, AC; Reppas, NB; Barry, KW; Malek, J; Chisholm, SW; Church, GM (2006). "Sequencing genomes from single cells by polymerase cloning". Nature Biotechnology. 24 (6): 680–6. doi:10.1038/nbt1214. PMID   16732271. S2CID   2994579.
  9. Stepanauskas, Ramunas; Sieracki, Michael E. (2007-05-22). "Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time". Proceedings of the National Academy of Sciences. 104 (21): 9052–9057. Bibcode:2007PNAS..104.9052S. doi: 10.1073/pnas.0700496104 . ISSN   0027-8424. PMC   1885626 . PMID   17502618.
  10. Yoon, Hwan Su; Price, Dana C.; Stepanauskas, Ramunas; Rajah, Veeran D.; Sieracki, Michael E.; Wilson, William H.; Yang, Eun Chan; Duffy, Siobain; Bhattacharya, Debashish (2011-05-06). "Single-Cell Genomics Reveals Organismal Interactions in Uncultivated Marine Protists". Science. 332 (6030): 714–717. Bibcode:2011Sci...332..714Y. doi:10.1126/science.1203163. ISSN   0036-8075. PMID   21551060. S2CID   34343205.
  11. Swan, Brandon K.; Martinez-Garcia, Manuel; Preston, Christina M.; Sczyrba, Alexander; Woyke, Tanja; Lamy, Dominique; Reinthaler, Thomas; Poulton, Nicole J.; Masland, E. Dashiell P. (2011-09-02). "Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean". Science. 333 (6047): 1296–1300. Bibcode:2011Sci...333.1296S. doi:10.1126/science.1203690. ISSN   0036-8075. PMID   21885783. S2CID   206533092.
  12. Woyke, Tanja; Xie, Gary; Copeland, Alex; González, José M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi (2009-04-23). "Assembling the Marine Metagenome, One Cell at a Time". PLOS ONE. 4 (4): e5299. Bibcode:2009PLoSO...4.5299W. doi: 10.1371/journal.pone.0005299 . ISSN   1932-6203. PMC   2668756 . PMID   19390573.
  13. Swan, Brandon K.; Tupper, Ben; Sczyrba, Alexander; Lauro, Federico M.; Martinez-Garcia, Manuel; González, José M.; Luo, Haiwei; Wright, Jody J.; Landry, Zachary C. (2013-07-09). "Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean". Proceedings of the National Academy of Sciences. 110 (28): 11463–11468. Bibcode:2013PNAS..11011463S. doi: 10.1073/pnas.1304246110 . ISSN   0027-8424. PMC   3710821 . PMID   23801761.
  14. Rinke, Christian; Schwientek, Patrick; Sczyrba, Alexander; Ivanova, Natalia N.; Anderson, Iain J.; Cheng, Jan-Fang; Darling, Aaron; Malfatti, Stephanie; Swan, Brandon K. (July 2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499 (7459): 431–437. Bibcode:2013Natur.499..431R. doi: 10.1038/nature12352 . hdl: 10453/27467 . ISSN   0028-0836. PMID   23851394.
  15. Kashtan, Nadav; Roggensack, Sara E.; Rodrigue, Sébastien; Thompson, Jessie W.; Biller, Steven J.; Coe, Allison; Ding, Huiming; Marttinen, Pekka; Malmstrom, Rex R. (2014-04-25). "Single-Cell Genomics Reveals Hundreds of Coexisting Subpopulations in Wild Prochlorococcus". Science. 344 (6182): 416–420. Bibcode:2014Sci...344..416K. doi:10.1126/science.1248575. hdl: 1721.1/92763 . ISSN   0036-8075. PMID   24763590. S2CID   13659345.
  16. Wilson, William H; Gilg, Ilana C; Moniruzzaman, Mohammad; Field, Erin K; Koren, Sergey; LeCleir, Gary R; Martínez Martínez, Joaquín; Poulton, Nicole J; Swan, Brandon K (2017-05-12). "Genomic exploration of individual giant ocean viruses". The ISME Journal. 11 (8): 1736–1745. Bibcode:2017ISMEJ..11.1736W. doi:10.1038/ismej.2017.61. ISSN   1751-7362. PMC   5520044 . PMID   28498373.
  17. Stepanauskas, Ramunas; Fergusson, Elizabeth A.; Brown, Joseph; Poulton, Nicole J.; Tupper, Ben; Labonté, Jessica M.; Becraft, Eric D.; Brown, Julia M.; Pachiadaki, Maria G. (2017-07-20). "Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles". Nature Communications. 8 (1): 84. Bibcode:2017NatCo...8...84S. doi:10.1038/s41467-017-00128-z. ISSN   2041-1723. PMC   5519541 . PMID   28729688.
  18. Pachiadaki, Maria G.; Sintes, Eva; Bergauer, Kristin; Brown, Julia M.; Record, Nicholas R.; Swan, Brandon K.; Mathyer, Mary Elizabeth; Hallam, Steven J.; Lopez-Garcia, Purificacion (2017-11-24). "Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation". Science. 358 (6366): 1046–1051. Bibcode:2017Sci...358.1046P. doi: 10.1126/science.aan8260 . ISSN   0036-8075. PMID   29170234.
  19. Coskun; Alsmadi, O (2007). "Whole genome amplification from a single cell: a new era for preimplantation genetic diagnosis". Prenatal Diagnosis. 27 (4): 297–302. doi:10.1002/pd.1667. PMID   17278176. S2CID   22175397.
  20. Shoaib; Baconnais, S; Mechold, U; Le Cam, E; Lipinski, M; Ogryzko, V (2008). "Multiple displacement amplification for complex mixtures of DNA fragments". BMC Genomics. 9: 415. doi: 10.1186/1471-2164-9-415 . PMC   2553422 . PMID   18793430.