Mutual coherence (linear algebra)

Last updated

In linear algebra, the coherence or mutual coherence of a matrix A is defined as the maximum absolute value of the cross-correlations between the columns of A. [1] [2]

Contents

Formally, let be the columns of the matrix A, which are assumed to be normalized such that The mutual coherence of A is then defined as [1] [2]

A lower bound is [3]

A deterministic matrix with the mutual coherence almost meeting the lower bound can be constructed by Weil's theorem. [4]

This concept was reintroduced by David Donoho and Michael Elad in the context of sparse representations. [5] A special case of this definition for the two-ortho case appeared earlier in the paper by Donoho and Huo. [6] The mutual coherence has since been used extensively in the field of sparse representations of signals. In particular, it is used as a measure of the ability of suboptimal algorithms such as matching pursuit and basis pursuit to correctly identify the true representation of a sparse signal. [1] [2] [7] Joel Tropp introduced a useful extension of Mutual Coherence, known as the Babel function, which extends the idea of cross-correlation between pairs of columns to the cross-correlation from one column to a set of other columns. The Babel function for two columns is exactly the Mutual coherence, but it also extends the coherence relationship concept in a way that is useful and relevant for any number of columns in the sparse representation matrix as well. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Principal component analysis</span> Method of data analysis

Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.

Biclustering, block clustering, Co-clustering or two-mode clustering is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin to name a technique introduced many years earlier, in 1972, by John A. Hartigan.

Non-negative matrix factorization, also non-negative matrix approximation is a group of algorithms in multivariate analysis and linear algebra where a matrix V is factorized into (usually) two matrices W and H, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.

<span class="mw-page-title-main">Matching pursuit</span> Multidimensional data algorithm

Matching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions taken from . An approximation with atoms has the form

<span class="mw-page-title-main">MUSIC (algorithm)</span> Algorithm used for frequency estimation and radio direction finding

MUSIC is an algorithm used for frequency estimation and radio direction finding.

Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, by finding solutions to underdetermined linear systems. This is based on the principle that, through optimization, the sparsity of a signal can be exploited to recover it from far fewer samples than required by the Nyquist–Shannon sampling theorem. There are two conditions under which recovery is possible. The first one is sparsity, which requires the signal to be sparse in some domain. The second one is incoherence, which is applied through the isometric property, which is sufficient for sparse signals. Compressed sensing has applications in, for example, MRI where the incoherence condition is typically satisfied.

Sparse approximation theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in image processing, signal processing, machine learning, medical imaging, and more.

Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal processing is its generality and portability.

In mathematics, more specifically in linear algebra, the spark of a matrix is the smallest integer such that there exists a set of columns in which are linearly dependent. If all the columns are linearly independent, is usually defined to be 1 more than the number of rows. The concept of matrix spark finds applications in error-correction codes, compressive sensing, and matroid theory, and provides a simple criterion for maximal sparsity of solutions to a system of linear equations.

In linear algebra, the restricted isometry property (RIP) characterizes matrices which are nearly orthonormal, at least when operating on sparse vectors. The concept was introduced by Emmanuel Candès and Terence Tao and is used to prove many theorems in the field of compressed sensing. There are no known large matrices with bounded restricted isometry constants, but many random matrices have been shown to remain bounded. In particular, it has been shown that with exponentially high probability, random Gaussian, Bernoulli, and partial Fourier matrices satisfy the RIP with number of measurements nearly linear in the sparsity level. The current smallest upper bounds for any large rectangular matrices are for those of Gaussian matrices. Web forms to evaluate bounds for the Gaussian ensemble are available at the Edinburgh Compressed Sensing RIC page.

In applied mathematics and statistics, basis pursuit denoising (BPDN) refers to a mathematical optimization problem of the form

The Babel function measures the maximum total coherence between a fixed atom and a collection of other atoms in a dictionary. The Babel function was conceived of in the context of signals for which there exists a sparse representation consisting of atoms or columns of a redundant dictionary matrix, A.

The term Blahut–Arimoto algorithm is often used to refer to a class of algorithms for computing numerically either the information theoretic capacity of a channel, the rate-distortion function of a source or a source encoding. They are iterative algorithms that eventually converge to one of the maxima of the optimization problem that is associated with these information theoretic concepts.

In communications technology, the technique of compressed sensing (CS) may be applied to the processing of speech signals under certain conditions. In particular, CS can be used to reconstruct a sparse vector from a smaller number of measurements, provided the signal can be represented in sparse domain. "Sparse domain" refers to a domain in which only a few measurements have non-zero values.

In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data. It is structurally related to the expectation maximization (EM) algorithm. k-SVD can be found widely in use in applications such as image processing, audio processing, biology, and document analysis.

In statistics, kernel-independent component analysis is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space. Those contrast functions use the notion of mutual information as a measure of statistical independence.

Sparse dictionary learning is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed. The above two properties lead to having seemingly redundant atoms that allow multiple representations of the same signal but also provide an improvement in sparsity and flexibility of the representation.

Directed information is an information theory measure that quantifies the information flow from the random string to the random string . The term directed information was coined by James Massey and is defined as

<span class="mw-page-title-main">Michael Elad</span> Israeli computer scientist

Michael Elad is a professor of Computer Science at the Technion - Israel Institute of Technology. His work includes fundamental contributions in the field of sparse representations, and deployment of these ideas to algorithms and applications in signal processing, image processing and machine learning.

This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations.

References

  1. 1 2 3 Tropp, J.A. (March 2006). "Just relax: Convex programming methods for identifying sparse signals in noise" (PDF). IEEE Transactions on Information Theory. 52 (3): 1030–1051. doi:10.1109/TIT.2005.864420. S2CID   6496872.
  2. 1 2 3 Donoho, D.L.; M. Elad; V.N. Temlyakov (January 2006). "Stable recovery of sparse overcomplete representations in the presence of noise". IEEE Transactions on Information Theory. 52 (1): 6–18. doi:10.1109/TIT.2005.860430. S2CID   14813938.
  3. Welch, L. R. (1974). "Lower bounds on the maximum cross-correlation of signals". IEEE Transactions on Information Theory. 20 (3): 397–399. doi:10.1109/tit.1974.1055219.
  4. Zhiqiang, Xu (April 2011). "Deterministic Sampling of Sparse Trigonometric Polynomials". Journal of Complexity. 27 (2): 133–140. arXiv: 1006.2221 . doi:10.1016/j.jco.2011.01.007. S2CID   2613562.
  5. Donoho, D.L.; Michael Elad (March 2003). "Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization". Proc. Natl. Acad. Sci. 100 (5): 2197–2202. Bibcode:2003PNAS..100.2197D. doi: 10.1073/pnas.0437847100 . PMC   153464 . PMID   16576749.
  6. Donoho, D.L.; Xiaoming Huo (November 2001). "Uncertainty principles and ideal atomic decomposition". IEEE Transactions on Information Theory. 47 (7): 2845–2862. CiteSeerX   10.1.1.39.3696 . doi:10.1109/18.959265. S2CID   9500527.
  7. Fuchs, J.-J. (June 2004). "On sparse representations in arbitrary redundant bases". IEEE Transactions on Information Theory. 50 (6): 1341–1344. doi:10.1109/TIT.2004.828141. S2CID   18432970.
  8. Joel A. Tropp (2004). "Greed is good: Algorithmic results for sparse approximation" (PDF). CiteSeerX   10.1.1.84.5256 .

Further reading