In mathematics and computer science, mutual recursion is a form of recursion where two mathematical or computational objects, such as functions or datatypes, are defined in terms of each other. [1] Mutual recursion is very common in functional programming and in some problem domains, such as recursive descent parsers, where the datatypes are naturally mutually recursive.
The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically:
f: [t[1], ..., t[k]] t: v f
A forest f consists of a list of trees, while a tree t consists of a pair of a value v and a forest f (its children). This definition is elegant and easy to work with abstractly (such as when proving theorems about properties of trees), as it expresses a tree in simple terms: a list of one type, and a pair of two types. Further, it matches many algorithms on trees, which consist of doing one thing with the value, and another thing with the children.
This mutually recursive definition can be converted to a singly recursive definition by inlining the definition of a forest:
t: v [t[1], ..., t[k]]
A tree t consists of a pair of a value v and a list of trees (its children). This definition is more compact, but somewhat messier: a tree consists of a pair of one type and a list of another, which require disentangling to prove results about.
In Standard ML, the tree and forest datatypes can be mutually recursively defined as follows, allowing empty trees: [2]
datatype'atree=Empty|Nodeof'a*'aforestand'aforest=Nil|Consof'atree*'aforest
Just as algorithms on recursive datatypes can naturally be given by recursive functions, algorithms on mutually recursive data structures can be naturally given by mutually recursive functions. Common examples include algorithms on trees, and recursive descent parsers. As with direct recursion, tail call optimization is necessary if the recursion depth is large or unbounded, such as using mutual recursion for multitasking. Note that tail call optimization in general (when the function called is not the same as the original function, as in tail-recursive calls) may be more difficult to implement than the special case of tail-recursive call optimization, and thus efficient implementation of mutual tail recursion may be absent from languages that only optimize tail-recursive calls. In languages such as Pascal that require declaration before use, mutually recursive functions require forward declaration, as a forward reference cannot be avoided when defining them.
As with directly recursive functions, a wrapper function may be useful, with the mutually recursive functions defined as nested functions within its scope if this is supported. This is particularly useful for sharing state across a set of functions without having to pass parameters between them.
A standard example of mutual recursion, which is admittedly artificial, determines whether a non-negative number is even or odd by defining two separate functions that call each other, decrementing by 1 each time. [3] In C:
boolis_even(unsignedintn){if(n==0)returntrue;elsereturnis_odd(n-1);}boolis_odd(unsignedintn){if(n==0)returnfalse;elsereturnis_even(n-1);}
These functions are based on the observation that the question is 4 even? is equivalent to is 3 odd?, which is in turn equivalent to is 2 even?, and so on down to 0. This example is mutual single recursion, and could easily be replaced by iteration. In this example, the mutually recursive calls are tail calls, and tail call optimization would be necessary to execute in constant stack space. In C, this would take O(n) stack space, unless rewritten to use jumps instead of calls. [4] This could be reduced to a single recursive function is_even
. In that case, is_odd
, which could be inlined, would call is_even
, but is_even
would only call itself.
As a more general class of examples, an algorithm on a tree can be decomposed into its behavior on a value and its behavior on children, and can be split up into two mutually recursive functions, one specifying the behavior on a tree, calling the forest function for the forest of children, and one specifying the behavior on a forest, calling the tree function for the tree in the forest. In Python:
deff_tree(tree)->None:f_value(tree.value)f_forest(tree.children)deff_forest(forest)->None:fortreeinforest:f_tree(tree)
In this case the tree function calls the forest function by single recursion, but the forest function calls the tree function by multiple recursion.
Using the Standard ML datatype above, the size of a tree (number of nodes) can be computed via the following mutually recursive functions: [5]
funsize_treeEmpty=0|size_tree(Node(_,f))=1+size_forestfandsize_forestNil=0|size_forest(Cons(t,f'))=size_treet+size_forestf'
A more detailed example in Scheme, counting the leaves of a tree: [6]
(define(count-leavestree)(if(leaf?tree)1(count-leaves-in-forest(childrentree))))(define(count-leaves-in-forestforest)(if(null?forest)0(+(count-leaves(carforest))(count-leaves-in-forest(cdrforest)))))
These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.
A more complicated example is given by recursive descent parsers, which can be naturally implemented by having one function for each production rule of a grammar, which then mutually recurse; this will in general be multiple recursion, as production rules generally combine multiple parts. This can also be done without mutual recursion, for example by still having separate functions for each production rule, but having them called by a single controller function, or by putting all the grammar in a single function.
Mutual recursion can also implement a finite-state machine, with one function for each state, and single recursion in changing state; this requires tail call optimization if the number of state changes is large or unbounded. This can be used as a simple form of cooperative multitasking. A similar approach to multitasking is to instead use coroutines which call each other, where rather than terminating by calling another routine, one coroutine yields to another but does not terminate, and then resumes execution when it is yielded back to. This allows individual coroutines to hold state, without it needing to be passed by parameters or stored in shared variables.
There are also some algorithms which naturally have two phases, such as minimax (min and max), which can be implemented by having each phase in a separate function with mutual recursion, though they can also be combined into a single function with direct recursion.
In mathematics, the Hofstadter Female and Male sequences are an example of a pair of integer sequences defined in a mutually recursive manner.
Fractals can be computed (up to a given resolution) by recursive functions. This can sometimes be done more elegantly via mutually recursive functions; the Sierpiński curve is a good example.
Mutual recursion is very common in functional programming, and is often used for programs written in LISP, Scheme, ML, and similar programming languages. For example, Abelson and Sussman describe how a meta-circular evaluator can be used to implement LISP with an eval-apply cycle. [7] In languages such as Prolog, mutual recursion is almost unavoidable.
Some programming styles discourage mutual recursion, claiming that it can be confusing to distinguish the conditions which will return an answer from the conditions that would allow the code to run forever without producing an answer. Peter Norvig points to a design pattern which discourages the use entirely, stating: [8]
If you have two mutually-recursive functions that both alter the state of an object, try to move almost all the functionality into just one of the functions. Otherwise you will probably end up duplicating code.
Mutual recursion is also known as indirect recursion, by contrast with direct recursion, where a single function calls itself directly. This is simply a difference of emphasis, not a different notion: "indirect recursion" emphasises an individual function, while "mutual recursion" emphasises the set of functions, and does not single out an individual function. For example, if f calls itself, that is direct recursion. If instead f calls g and then g calls f, which in turn calls g again, from the point of view of f alone, f is indirectly recursing, while from the point of view of g alone, g is indirectly recursing, while from the point of view of both, f and g are mutually recursing on each other. Similarly a set of three or more functions that call each other can be called a set of mutually recursive functions.
Mathematically, a set of mutually recursive functions are primitive recursive, which can be proven by course-of-values recursion, building a single function F that lists the values of the individual recursive function in order: and rewriting the mutual recursion as a primitive recursion.
Any mutual recursion between two procedures can be converted to direct recursion by inlining the code of one procedure into the other. [9] If there is only one site where one procedure calls the other, this is straightforward, though if there are several it can involve code duplication. In terms of the call stack, two mutually recursive procedures yield a stack ABABAB..., and inlining B into A yields the direct recursion (AB)(AB)(AB)...
Alternately, any number of procedures can be merged into a single procedure that takes as argument a variant record (or algebraic data type) representing the selection of a procedure and its arguments; the merged procedure then dispatches on its argument to execute the corresponding code and uses direct recursion to call self as appropriate. This can be seen as a limited application of defunctionalization. [10] This translation may be useful when any of the mutually recursive procedures can be called by outside code, so there is no obvious case for inlining one procedure into the other. Such code then needs to be modified so that procedure calls are performed by bundling arguments into a variant record as described; alternately, wrapper procedures may be used for this task.
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances, it is often done in such a way that no infinite loop or infinite chain of references can occur.
Scheme is a dialect of the Lisp family of programming languages. Scheme was created during the 1970s at the MIT Computer Science and Artificial Intelligence Laboratory and released by its developers, Guy L. Steele and Gerald Jay Sussman, via a series of memos now known as the Lambda Papers. It was the first dialect of Lisp to choose lexical scope and the first to require implementations to perform tail-call optimization, giving stronger support for functional programming and associated techniques such as recursive algorithms. It was also one of the first programming languages to support first-class continuations. It had a significant influence on the effort that led to the development of Common Lisp.
In computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption.
Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular for writing compilers, for programming language research, and for developing theorem provers.
Generic programming is a style of computer programming in which algorithms are written in terms of data types to-be-specified-later that are then instantiated when needed for specific types provided as parameters. This approach, pioneered by the ML programming language in 1973, permits writing common functions or types that differ only in the set of types on which they operate when used, thus reducing duplicate code.
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
In computing, inline expansion, or inlining, is a manual or compiler optimization that replaces a function call site with the body of the called function. Inline expansion is similar to macro expansion, but occurs during compilation, without changing the source code, while macro expansion occurs prior to compilation, and results in different text that is then processed by the compiler.
Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot possibly be completed to a valid solution.
Coroutines are computer program components that allow execution to be suspended and resumed, generalizing subroutines for cooperative multitasking. Coroutines are well-suited for implementing familiar program components such as cooperative tasks, exceptions, event loops, iterators, infinite lists and pipes.
In computer programming, especially functional programming and type theory, an algebraic data type (ADT) is a kind of composite type, i.e., a type formed by combining other types.
The Glasgow Haskell Compiler (GHC) is a native or machine code compiler for the functional programming language Haskell. It provides a cross-platform software environment for writing and testing Haskell code and supports many extensions, libraries, and optimisations that streamline the process of generating and executing code. GHC is the most commonly used Haskell compiler. It is free and open-source software released under a BSD license. The lead developers are Simon Peyton Jones and Simon Marlow.
In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls to pure functions and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts, such as in simple mutually recursive descent parsing. It is a type of caching, distinct from other forms of caching such as buffering and page replacement. In the context of some logic programming languages, memoization is also known as tabling.
In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion. Tail recursion is particularly useful, and is often easy to optimize in implementations.
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions.
In computer science, corecursion is a type of operation that is dual to recursion. Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case. Put simply, corecursive algorithms use the data that they themselves produce, bit by bit, as they become available, and needed, to produce further bits of data. A similar but distinct concept is generative recursion which may lack a definite "direction" inherent in corecursion and recursion.
In computer programming languages, a recursive data type is a data type for values that may contain other values of the same type. Data of recursive types are usually viewed as directed graphs.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science.
The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit repetitions.
In computer science, polymorphic recursion refers to a recursive parametrically polymorphic function where the type parameter changes with each recursive invocation made, instead of staying constant. Type inference for polymorphic recursion is equivalent to semi-unification and therefore undecidable and requires the use of a semi-algorithm or programmer-supplied type annotations.
In computer programming, a function, subprogram, procedure, method, routine or subroutine is a callable unit that has a well-defined behavior and can be invoked by other software units to exhibit that behavior.