N-body choreography

Last updated

An n-body choreography is a periodic solution to the n-body problem in which all the bodies are equally spread out along a single orbit. [1] The term was originated in 2000 by Chenciner and Montgomery. [1] [2] [3] One such orbit is a circular orbit, with equal masses at the corners of an equilateral triangle; another is the figure-8 orbit, first discovered numerically in 1993 by Cristopher Moore [4] and subsequently proved to exist by Chenciner and Montgomery. Choreographies can be discovered using variational methods, [1] and more recently, topological approaches have been used to attempt a classification in the planar case. [5] Having knowledge of specific solutions such as choreographies can be incredibly useful as it is not possible to solve the N-body problem for N > 2 through explicit means.

Contents

Numerical Method

Numerical methods using computers have been crucial in the discovery and understanding of choreographies from their inception. In 1993, Moore employed a numerical implementation of the direct method from the calculus of variations to uncover the "eight" choreography. Later, during the rediscovery period between 1999 and 2000, Carles Simó dispelled doubts surrounding the validity of complex existence proofs through meticulous numerical investigations. [6]

The numerical implementation process can be distilled into a gradient search within a finite-dimensional approximation of the path space. One approach involves discretizing the path at uniform time intervals. Another effective method entails expressing the action as a function of the Fourier components of the choreography curve and truncating the Fourier series at a finite order. Convergence can be verified by increasing the truncation order and observing the alterations in the resulting minimizing Fourier coefficients. If these changes fall within a specified tolerance range, the result can be considered successful. For further refinements, consult the works of Simó or Moore and Nauenberg. [7]

Topological Method

In 2013, Montaldi and Steckles categorized all possible symmetry groups of planar 𝑛-body collision-free choreographies, which can be divided into two infinite families and, in the case of odd values of 𝑛, three exceptional groups. The second part of their study involves the development of the equivariant fundamental group, which is employed to identify the topology of the space of loops possessing a particular symmetry. They demonstrate that this topology is linked to certain cosets of the pure braid group in the full braid group, as well as the centralizers of elements within the corresponding coset. Furthermore, their work refines the symmetry classification by categorizing the connected components of the set of loops with a given symmetry, leading to the discovery of many new choreographies in 𝑛-body systems that are governed by a strong force potential. [8]

Related Research Articles

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

<span class="mw-page-title-main">Polyomino</span> Geometric shapes formed from squares

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling.

<span class="mw-page-title-main">Celestial mechanics</span> Branch of astronomy

Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics to astronomical objects, such as stars and planets, to produce ephemeris data.

<span class="mw-page-title-main">Quantum chaos</span> Branch of physics seeking to explain chaotic dynamical systems in terms of quantum theory

Quantum chaos is a branch of physics which studies how chaotic classical dynamical systems can be described in terms of quantum theory. The primary question that quantum chaos seeks to answer is: "What is the relationship between quantum mechanics and classical chaos?" The correspondence principle states that classical mechanics is the classical limit of quantum mechanics, specifically in the limit as the ratio of Planck's constant to the action of the system tends to zero. If this is true, then there must be quantum mechanisms underlying classical chaos. If quantum mechanics does not demonstrate an exponential sensitivity to initial conditions, how can exponential sensitivity to initial conditions arise in classical chaos, which must be the correspondence principle limit of quantum mechanics?

<span class="mw-page-title-main">Braid group</span> Group whose operation is a composition of braids

In mathematics, the braid group on n strands, also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids, and whose group operation is composition of braids. Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids ; in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation ; and in monodromy invariants of algebraic geometry.

<span class="mw-page-title-main">Hearing the shape of a drum</span>

To hear the shape of a drum is to infer information about the shape of the drumhead from the sound it makes, i.e., from the list of overtones, via the use of mathematical theory.

<span class="mw-page-title-main">Three-body problem</span> Physics problem related to laws of motion and gravity

In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, such that its behaviour has far fewer degrees of freedom than the dimensionality of its phase space; that is, its evolution is restricted to a submanifold within its phase space.

<span class="mw-page-title-main">Antiparallelogram</span> Polygon with four crossed edges of two lengths

In geometry, an antiparallelogram is a type of self-crossing quadrilateral. Like a parallelogram, an antiparallelogram has two opposite pairs of equal-length sides, but these pairs of sides are not in general parallel. Instead, sides in the longer pair cross each other as in a scissors mechanism. Antiparallelograms are also called contraparallelograms or crossed parallelograms.

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

<span class="texhtml mvar" style="font-style:italic;">n</span>-body problem Problem in physics and celestial mechanics

In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.

Cristopher David Moore, known as Cris Moore, is an American computer scientist, mathematician, and physicist. He is resident faculty at the Santa Fe Institute, and was formerly a full professor at the University of New Mexico.

<span class="mw-page-title-main">Zero-symmetric graph</span>

In the mathematical field of graph theory, a zero-symmetric graph is a connected graph in which each vertex has exactly three incident edges and, for each two vertices, there is a unique symmetry taking one vertex to the other. Such a graph is a vertex-transitive graph but cannot be an edge-transitive graph: the number of symmetries equals the number of vertices, too few to take every edge to every other edge.

Zhihong "Jeff" Xia is a Chinese-American mathematician.

Mihnea Popa is a Romanian-American mathematician at Harvard University, specializing in algebraic geometry. He is known for his work on complex birational geometry, Hodge theory, abelian varieties, and vector bundles.

In celestial mechanics and the mathematics of the n-body problem, a central configuration is a system of point masses with the property that each mass is pulled by the combined gravitational force of the system directly towards the center of mass, with acceleration proportional to its distance from the center. Central configurations may be studied in Euclidean spaces of any dimension, although only dimensions one, two, and three are directly relevant for celestial mechanics.

<span class="mw-page-title-main">Spherical conic</span>

In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant. By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a "reflection property": the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

References

  1. 1 2 3 Vanderbei, Robert J. (2004). "New Orbits for the n-Body Problem". Annals of the New York Academy of Sciences. 1017 (1): 422–433. arXiv: astro-ph/0303153 . Bibcode:2004NYASA1017..422V. CiteSeerX   10.1.1.140.6108 . doi:10.1196/annals.1311.024. PMID   15220160. S2CID   8202325.
  2. Simó, C. [2000], New families of Solutions in N-Body Problems, Proceedings of the ECM 2000, Barcelona (July, 10-14).
  3. "A remarkable periodic solution of the three-body problem in the case of equal masses". The original article by Alain Chenciner and Richard Montgomery. Annals of Mathematics, 152 (2000), 881–901.
  4. Moore, Cristopher (1993-06-14). "Braids in classical dynamics". Physical Review Letters. American Physical Society (APS). 70 (24): 3675–3679. Bibcode:1993PhRvL..70.3675M. doi:10.1103/physrevlett.70.3675. ISSN   0031-9007. PMID   10053934. Moore's numerical discovery of the figure-8 choreography using variational methods.
  5. Montaldi, James; Steckles, Katerina (2013). "Classification of symmetry groups for planar n-body choreographies". Forum of Mathematics, Sigma. Cambridge University Press (CUP). 1: e5. arXiv: 1305.0470 . Bibcode:2013arXiv1305.0470M. doi: 10.1017/fms.2013.5 . ISSN   2050-5094. CC BY icon-80x15.png  This article incorporates textfrom this source, which is available under the CC BY 3.0 license.
  6. Simó, Carles (2002), Chenciner, Alain; Cushman, Richard; Robinson, Clark; Xia, Zhihong Jeff (eds.), Dynamical properties of the figure eight solution of the three-body problem, Contemporary Mathematics, vol. 292, Providence, Rhode Island: American Mathematical Society, pp. 209–228, doi:10.1090/conm/292/04926, ISBN   978-0-8218-2902-8 , retrieved 2023-05-05
  7. Moore, Cristopher; Nauenberg, Michael (2008-10-17). "New Periodic Orbits for the n-Body Problem". arXiv: math/0511219 .
  8. Montaldi, James; Steckles, Katrina (2013). "Classification of Symmetry Groups for Planar -Body Choreographies". Forum of Mathematics, Sigma. 1: e5. doi:10.1017/fms.2013.5. ISSN   2050-5094. S2CID   119143933.