NEMO deficiency syndrome

Last updated

Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. [1] It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.

Contents

The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. [2] Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls. [3]

Presentation

Commonly associated diseases

NEMO deficiency syndrome may present itself as incontinentia pigmenti or ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.

Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as incontinetia pigmenti (IP). [4] Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of incontinetia pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene. [5]

Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-IP). [4] The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.

Diagnosis

Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, [6] but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia. [7]

The clinical presentation of NEMO deficiency is determined by three main symptoms:

  1. Susceptibility to pyogenic infections in the form of severe local inflammation
  2. Susceptibility to mycobacterial infection
  3. Symptoms of Ectodermal Dysplasia

To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.

Treatment

The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.

In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor. [3]

Related Research Articles

Immunodeficiency, also known as immunocompromisation, is a state in which the immune system's ability to fight infectious diseases and cancer is compromised or entirely absent. Most cases are acquired ("secondary") due to extrinsic factors that affect the patient's immune system. Examples of these extrinsic factors include HIV infection and environmental factors, such as nutrition. Immunocompromisation may also be due to genetic diseases/flaws such as SCID.

<span class="mw-page-title-main">Incontinentia pigmenti</span> Rare X-linked dominant genetic disorder

Incontinentia pigmenti (IP) is a rare X-linked dominant genetic disorder that affects the skin, hair, teeth, nails and central nervous system. It is named from its appearance under a microscope.

<span class="mw-page-title-main">Omenn syndrome</span> Medical condition

Omenn syndrome is an autosomal recessive severe combined immunodeficiency. It is associated with hypomorphic missense mutations in immunologically relevant genes of T-cells such as recombination activating genes, Interleukin-7 receptor-α (IL7Rα), DCLRE1C-Artemis, RMRP-CHH, DNA-Ligase IV, common gamma chain, WHN-FOXN1, ZAP-70 and complete DiGeorge syndrome. It is fatal without treatment.

<span class="mw-page-title-main">X-linked agammaglobulinemia</span> Medical condition

X-linked agammaglobulinemia (XLA) is a rare genetic disorder discovered in 1952 that affects the body's ability to fight infection. As the form of agammaglobulinemia that is X-linked, it is much more common in males. In people with XLA, the white blood cell formation process does not generate mature B cells, which manifests as a complete or near-complete lack of proteins called gamma globulins, including antibodies, in their bloodstream. B cells are part of the immune system and normally manufacture antibodies, which defend the body from infections by sustaining a humoral immunity response. Patients with untreated XLA are prone to develop serious and even fatal infections. A mutation occurs at the Bruton's tyrosine kinase (Btk) gene that leads to a severe block in B cell development and a reduced immunoglobulin production in the serum. Btk is particularly responsible for mediating B cell development and maturation through a signaling effect on the B cell receptor BCR. Patients typically present in early childhood with recurrent infections, in particular with extracellular, encapsulated bacteria. XLA is deemed to have a relatively low incidence of disease, with an occurrence rate of approximately 1 in 200,000 live births and a frequency of about 1 in 100,000 male newborns. It has no ethnic predisposition. XLA is treated by infusion of human antibody. Treatment with pooled gamma globulin cannot restore a functional population of B cells, but it is sufficient to reduce the severity and number of infections due to the passive immunity granted by the exogenous antibodies.

Hypogammaglobulinemia is an immune system disorder in which not enough gamma globulins are produced in the blood. This results in a lower antibody count, which impairs the immune system, increasing risk of infection. Hypogammaglobulinemia may result from a variety of primary genetic immune system defects, such as common variable immunodeficiency, or it may be caused by secondary effects such as medication, blood cancer, or poor nutrition, or loss of gamma globulins in urine, as in nonselective glomerular proteinuria. Patients with hypogammaglobulinemia have reduced immune function; important considerations include avoiding use of live vaccines, and take precautionary measures when traveling to regions with endemic disease or poor sanitation such as receiving immunizations, taking antibiotics abroad, drinking only safe or boiled water, arranging appropriate medical cover in advance of travel, and ensuring continuation of any immunoglobulin infusions needed.

<span class="mw-page-title-main">Hyper IgM syndrome</span> Primary immune deficiency disorders

Hyper IgM syndrome is a rare primary immune deficiency disorders characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM.

<span class="mw-page-title-main">Hyper-IgM syndrome type 2</span> Primary immune deficiency disorder

Hyper IgM syndrome type 2 is a rare disease. Unlike other hyper-IgM syndromes, type 2 patients identified thus far did not present with a history of opportunistic infections. One would expect opportunistic infections in any immunodeficiency syndrome. The responsible genetic lesion is in the AICDA gene found at 12p13.

<span class="mw-page-title-main">Hyper-IgM syndrome type 5</span> Primary immune deficiency disorder

The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact.

Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a primary immunodeficiency (PID), the immune deficiency must be inborn, not caused by secondary factors such as other disease, drug treatment, or environmental exposure to toxins. Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 430 recognized inborn errors of immunity (IEIs) as of 2019, the vast majority of which are PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, auto-inflammatory disorders, tumors, and disorders of various organs. There are currently limited treatments available for these conditions; most are specific to a particular type of PID. Research is currently evaluating the use of stem cell transplants (HSCT) and experimental gene therapies as avenues for treatment in limited subsets of PIDs.

<span class="mw-page-title-main">IKBKG</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B essential modulator (NEMO) also known as inhibitor of nuclear factor kappa-B kinase subunit gamma (IKK-γ) is a protein that in humans is encoded by the IKBKG gene. NEMO is a subunit of the IκB kinase complex that activates NF-κB. The human gene for IKBKG is located on the chromosome band Xq28. Multiple transcript variants encoding different isoforms have been found for this gene.

An immune disorder is a dysfunction of the immune system. These disorders can be characterized in several different ways:

<span class="mw-page-title-main">NFKB2</span> Protein-coding gene in the species Homo sapiens

Nuclear factor NF-kappa-B p100 subunit is a protein that in humans is encoded by the NFKB2 gene.

<span class="mw-page-title-main">Hyper-IgM syndrome type 3</span> Primary immune deficiency disorder

Hyper-IgM syndrome type 3 is a form of hyper IgM syndrome characterized by mutations of the CD40 gene. In this type, Immature B cells cannot receive signal 2 from helper T cells which is necessary to mature into mature B cells.

<span class="mw-page-title-main">Setleis syndrome</span> Medical condition

Setleis syndrome is a very rare genetic condition characterized by facial skin abnormalities and double upper eyelashes and missing lower eyelashes. It belongs to a group of diseases known as ectodermal dysplasias. Ectodermal dysplasias typically affect the hair, teeth, nails, and/or skin. Setleis syndrome is characterized by distinctive abnormalities of the facial area that may be apparent at birth (congenital). Most affected infants have multiple, scar-like, circular depressions on both temples (bitemporal). These marks closely resemble those made when forceps are used to assist delivery. The range and severity of symptoms may vary from case to case.

<span class="mw-page-title-main">Caspase-8 deficiency</span> Medical condition

Caspase-8 deficiency (CEDS) is a very rare genetic disorder of the immune system. It is caused by mutations in the CASP8 gene that encodes the protein caspase-8. The disorder is characterized by splenomegaly and lymphadenopathy, in addition to recurrent sinopulmonary infections, recurrent mucocutaneous herpesvirus or other viral infections, and hypogammaglobulinemia. Investigators in the laboratory of Dr. Michael Lenardo at the National Institutes of Health described this condition in two siblings from a consanguineous family in 2002, and several more affected family members have since been identified.

<span class="mw-page-title-main">DOCK8 deficiency</span> Medical condition

DOCK8 deficiency, also called DOCK8 immunodeficiency syndrome, is the autosomal recessive form of hyperimmunoglobulin E syndrome, a genetic disorder characterized by elevated immunoglobulin E levels, eosinophilia, and recurrent infections with staphylococcus and viruses. It is caused by a mutation in the DOCK8 gene.

An innate immune defect is a defect in the innate immune response that blunts the response to infection. These defects may occur in monocytes, neutrophils, natural killer cells, basophils, mast cells or complement proteins.

Autoinflammatory diseases (AIDs) are a group of rare disorders caused by dysfunction of the innate immune system. These responses are characterized by periodic or chronic systemic inflammation, usually without the involvement of adaptive immunity.

<span class="mw-page-title-main">Hypohidrotic ectodermal dysplasia with immune deficiency</span> Medical condition

Hypohidrotic/anhidrotic ectodermal dysplasia with immune deficiency is a rare genetic condition characterized by a combination of the features of ectodermal dysplasia alongside immunodeficiency.

References

  1. Cheng LE, Kanwar B, Tcheurekdjian H, Grenert JP, Muskat M, Heyman MB, McCune JM, Wara DW (2009). "Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome". Clinical Immunology (Orlando, Fla.). 132 (1): 124–31. doi:10.1016/j.clim.2009.03.514. PMC   2800791 . PMID   19375390.
  2. NEMO deficiency syndrome information, Great Ormond Street Hospital for Children
  3. 1 2 "NEMO deficiency syndrome" . Retrieved 2017-01-16.
  4. 1 2 Zhang, Qian; Lenardo, Michael; Baltimore, David (12 Jan 2017). "30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology". Cell. 168: 37–57. doi:10.1016/j.cell.2016.12.012. PMC   5268070 .
  5. Fusco, F (May 2008). "Alterations of the IKBKG locus and diseases: An update and a report of 13 novel mutations". Human Mutation. 29 (5): 595–604. doi: 10.1002/humu.20739 .
  6. "NEMO deficiency syndrome". Great Ormond Street Hospital for Children. July 2015. Retrieved January 5, 2019.
  7. Fusco, F (2015). "EDA-ID and IP, two faces of the same coin: how the same IKBKG/NEMO mutation affecting the NF-κB pathway can cause immunodeficiency and/or inflammation". Int Rev Immunol. 34 (6): 445. doi:10.3109/08830185.2015.1055331. PMID   26269396.