Native POSIX Thread Library

Last updated

The Native POSIX Thread Library (NPTL) is an implementation of the POSIX Threads specification for the Linux operating system.

Contents

History

Before the 2.6 version of the Linux kernel, processes were the schedulable entities, and there were no special facilities for threads. [1] However, it did have a system call clone — which creates a copy of the calling process where the copy shares the address space of the caller. The LinuxThreads project used this system call to provide kernel-level threads (most of the previous thread implementations in Linux worked entirely in userland). Unfortunately, it only partially complied with POSIX, particularly in the areas of signal handling, scheduling, and inter-process synchronization primitives.

To improve upon LinuxThreads, it was clear that some kernel support and a new threading library would be required. Two competing projects were started to address the requirement: NGPT (Next Generation POSIX Threads) worked on by a team which included developers from IBM, and NPTL by developers at Red Hat. The NGPT team collaborated closely with the NPTL team and combined the best features of both implementations into NPTL. The NGPT project was subsequently abandoned in mid-2003 after merging its best features into NPTL.

NPTL was first released in Red Hat Linux 9. Old-style Linux POSIX threading is known for having trouble with threads that refuse to yield to the system occasionally, because it does not take the opportunity to preempt them when it arises, something that Windows was known to do better at the time. Red Hat claimed that NPTL fixed this problem in an article on the Java website about Java on Red Hat Linux 9. [2]

NPTL has been part of Red Hat Enterprise Linux since version 3, and in the Linux kernel since version 2.6. It is now a fully integrated part of the GNU C Library. [3]

There exists a tracing tool for NPTL, called POSIX Thread Trace Tool (PTT). And an Open POSIX Test Suite (OPTS) was written for testing the NPTL library against the POSIX standard.

Design

Like LinuxThreads, NPTL is a 1:1 threads library. Threads created by the library (via pthread_create) correspond one-to-one with schedulable entities in the kernel (processes, in the Linux case). [4] :226 This is the simplest of the three threading models (1:1, N:1, and M:N). [4] :215–216 New threads are created with the clone() system call called through the NPTL library. NPTL relies on kernel support for futexes to more efficiently implement user-space locks. [4] :182

See also

Related Research Articles

<span class="mw-page-title-main">GNU Hurd</span> Operating system kernel designed as a replacement for Unix

GNU Hurd is a collection of microkernel servers written as part of GNU, for the GNU Mach microkernel. It has been under development since 1990 by the GNU Project of the Free Software Foundation, designed as a replacement for the Unix kernel, and released as free software under the GNU General Public License. When the Linux kernel proved to be a viable solution, development of GNU Hurd slowed, at times alternating between stasis and renewed activity and interest.

The Portable Operating System Interface is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems. POSIX defines both the system and user-level application programming interfaces (APIs), along with command line shells and utility interfaces, for software compatibility (portability) with variants of Unix and other operating systems. POSIX is also a trademark of the IEEE. POSIX is intended to be used by both application and system developers.

<span class="mw-page-title-main">Red Hat Linux</span> Linux distribution

Red Hat Linux was a widely used commercial open-source Linux distribution created by Red Hat until its discontinuation in 2004.

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

<span class="mw-page-title-main">GNU Project</span> Free software project

The GNU Project is a free software, mass collaboration project announced by Richard Stallman on September 27, 1983. Its goal is to give computer users freedom and control in their use of their computers and computing devices by collaboratively developing and publishing software that gives everyone the rights to freely run the software, copy and distribute it, study it, and modify it. GNU software grants these rights in its license.

In computing, particularly in the context of the Unix operating system and its workalikes, fork is an operation whereby a process creates a copy of itself. It is an interface which is required for compliance with the POSIX and Single UNIX Specification standards. It is usually implemented as a C standard library wrapper to the fork, clone, or other system calls of the kernel. Fork is the primary method of process creation on Unix-like operating systems.

The GNU C Library, commonly known as glibc, is the GNU Project implementation of the C standard library. It is a wrapper around the system calls of the Linux kernel for application use. Despite its name, it now also directly supports C++. It was started in the 1980s by the Free Software Foundation (FSF) for the GNU operating system.

RTLinux is a hard realtime real-time operating system (RTOS) microkernel that runs the entire Linux operating system as a fully preemptive process. The hard real-time property makes it possible to control robots, data acquisition systems, manufacturing plants, and other time-sensitive instruments and machines from RTLinux applications. The design was patented. Despite the similar name, it is not related to the Real-Time Linux project of the Linux Foundation.

In computing, POSIX Threads, commonly known as pthreads, is an execution model that exists independently from a programming language, as well as a parallel execution model. It allows a program to control multiple different flows of work that overlap in time. Each flow of work is referred to as a thread, and creation and control over these flows is achieved by making calls to the POSIX Threads API. POSIX Threads is an API defined by the Institute of Electrical and Electronics Engineers (IEEE) standard POSIX.1c, Threads extensions .

In computing, a futex is a kernel system call that programmers can use to implement basic locking, or as a building block for higher-level locking abstractions such as semaphores and POSIX mutexes or condition variables.

DCEThreads is an implementation of POSIX Draft 4 threads. DCE Stands for "Distributed Computing Environment" DCEThreads allowed users to create multiple avenues of execution in a single process. It is based on pthreads interface.

In computer operating systems, a light-weight process (LWP) is a means of achieving multitasking. In the traditional meaning of the term, as used in Unix System V and Solaris, a LWP runs in user space on top of a single kernel thread and shares its address space and system resources with other LWPs within the same process. Multiple user-level threads, managed by a thread library, can be placed on top of one or many LWPs - allowing multitasking to be done at the user level, which can have some performance benefits.

In the Linux operating system, LinuxThreads was a partial implementation of POSIX Threads introduced in 1996. The main developer of LinuxThreads was Xavier Leroy. It has been superseded by the Native POSIX Thread Library (NPTL).

<span class="mw-page-title-main">Linux</span> Family of Unix-like operating systems

Linux is a family of open-source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991, by Linus Torvalds. Linux is typically packaged as a Linux distribution (distro), which includes the kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses and recommends the name "GNU/Linux" to emphasize the use and importance of GNU software in many distributions, causing some controversy.

<span class="mw-page-title-main">Grand Central Dispatch</span> Technology developed by Apple Inc

Grand Central Dispatch, is a technology developed by Apple Inc. to optimize application support for systems with multi-core processors and other symmetric multiprocessing systems. It is an implementation of task parallelism based on the thread pool pattern. The fundamental idea is to move the management of the thread pool out of the hands of the developer, and closer to the operating system. The developer injects "work packages" into the pool oblivious of the pool's architecture. This model improves simplicity, portability and performance.

<span class="mw-page-title-main">Unix-like</span> Operating system that behaves similarly to Unix, e.g. Linux

A Unix-like operating system is one that behaves in a manner similar to a Unix system, although not necessarily conforming to or being certified to any version of the Single UNIX Specification. A Unix-like application is one that behaves like the corresponding Unix command or shell. Although there are general philosophies for Unix design, there is no technical standard defining the term, and opinions can differ about the degree to which a particular operating system or application is Unix-like.

<span class="mw-page-title-main">Linux kernel</span> Free Unix-like operating system kernel

The Linux kernel is a free and open-source, UNIX-like kernel that is used in many computer systems worldwide. The kernel was created by Linus Torvalds in 1991 and soon after was adopted as the kernel for the GNU operating system (OS) which was created to be a free replacement for Unix.

<span class="mw-page-title-main">Unix</span> Family of computer operating systems

Unix is a family of multitasking, multi-user computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, and others.

Bionic is an implementation of the standard C library, developed by Google for its Android operating system. It differs from the GNU C Library (glibc) in being designed for devices with less memory and processor power than a typical Linux system. It is a combination of new code and code from FreeBSD, NetBSD, and OpenBSD released under a BSD license, rather than glibc, which uses the GNU Lesser General Public License. This difference was important in the early days of Android, when static linking was common, and since bionic has its own ABI, it can't be replaced by a different libc without breaking all existing apps.

References

  1. pthreads(7) — Linux manual page
  2. Red Hat Linux 9 and Java 2 Platform, Standard Edition 1.4.2: A Winning Combination
  3. GNU C Library version 2.3.3 release
  4. 1 2 3 Robert Love (2013). Linux System Programming (2nd ed.). O'Reilly Media, Incorporated. ISBN   978-1449339531.