Near-field scanner

Last updated

Electromagnetic near-field scanner (NFS [1] ) is a measurement system to determine a spatial distribution of an electrical quantity provided by a single or multiple field probes acquired in the near-field region of a device under test possibly accompanied by the associated numerical post-processing methods enabling a conversion of the measured quantity into electromagnetic field.

Contents

Depending on a signal receiver detecting the probe signal, voltage as a function of time or frequency is a typical measured quantity. It should be underlined that as the DUT may be considered any object radiating or storing electromagnetic field energy intentionally or unintentionally, e.g. the antenna radiation excited beyond its resonance frequency. The voltage pattern is usually mapped on planar, cylindrical or spherical geometrical surfaces as a collection of a finite number of spatial samples.

Antenna near-field scanner

First scanners were built in the 1950s to map probe signal variations in front of microwave antennas. Determination of a far-field radiation pattern constitutes the primary application of antenna near-field scanners. This novel technique offered an attractive alternative to conventional open area test sites for measurements of high gain, electrically large antennas or antenna arrays (gain > 20 dBi, diameter > 5λ) in an indoor, controlled and all-weather capability environment. Among well recognized and analyzed errors of the near-field measurements, multiple reflections between an antenna under test (AUT) and an electromagnetically non-transparent field detection system (scatterer) belong to the most contributing errors when the AUT has a high gain. Therefore, the scanning surface is recommended to be located outside the reactive near-field region of the AUT.

EMI near-field scanner

General system of an EMI scanner GENERAL SCANNING SYSTEM.png
General system of an EMI scanner

In EMI applications, the main focus of a scanner system is on locating real electromagnetic interference (EMI) sources distributed in a device under test, the DUT. Accordingly, the scanning surface is located in the highly reactive region of the DUT to enable a precise spatial localization of the electric charges and current surface densities directly from the mapped pattern of probe signals. Typically the separation between the scanning surface and the DUT is much smaller than the largest physical dimension of the DUT. Typical distances are 1 mm for scanning of PCBs and 30 μm for scanning of integrated circuits on a die level. In order to quickly localize field emission in the frequency domain, time domain detection techniques together with signal processing based on fast Fourier transform could be employed, e.g. utilizing a digital storage oscilloscope as a signal receiver.

Further reading

IEC/TS 61967-3: Integrated circuits - Measurement of electromagnetic emissions, 150 kHz to 1 GHz - Part 3: Measurement of radiated emissions - Surface scan method. International Electrotechnical Commission. June 2005.

Stuart Gregson, John McCormick and Clive Parini (2007). The Principles of Planar Near-Field Antenna Measurements. London, United Kingdom: The Institution of Engineering and Technology.

Slater, Dan (1991). Near-Field Antenna Measurements. Norwood, MA, USA: Artech House, Inc.

Tankielun, Adam (2008). Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanner. Aachen, Germany: Shaker Verlag.

Yaghjian, Arthur D. (January 1986). "An Overview of Near-Field Antenna Measurements" (PDF). IEEE Transactions on Antennas and Propagation. AP-34 (1): 30–45. Bibcode:1986ITAP...34...30Y. doi:10.1109/tap.1986.1143727.

Related Research Articles

Electromagnetic compatibility

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage in operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

Conformance testing — an element of conformity assessment, and also known as compliance testing, or type testing — is testing or other activities that determine whether a process, product, or service complies with the requirements of a specification, technical standard, contract, or regulation. Testing is often either logical testing or physical testing. The test procedures may involve other criteria from mathematical testing or chemical testing. Beyond simple conformance, other requirements for efficiency, interoperability or compliance may apply. Conformance testing may be undertaken by the producer of the product or service being assessed, by a user, or by an accredited independent organization, which can sometimes be the author of the standard being used. When testing is accompanied by certification, the products or services may then be advertised as being certified in compliance with the referred technical standard. Manufacturers and suppliers of products and services rely on such certification including listing on the certification body's website, to assure quality to the end user and that competing suppliers are on the same level.

Antenna (radio) Electrical device

In radio engineering, an antenna or aerial is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver. In transmission, a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves. In reception, an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified. Antennas are essential components of all radio equipment.

Microwave radiometer

A microwave radiometer (MWR) is a radiometer that measures energy emitted at one milimetre-to-metre wavelengths known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermally-emitted electromagnetic radiation. They are usually equipped with multiple receiving channels in order to derive the characteristic emission spectrum of planetary atmospheres, surfaces or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including remote sensing, weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

Near and far field

The near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scattering object, while electromagnetic radiation far-field behaviors dominate at greater distances.

This is an index of articles relating to electronics and electricity or natural electricity and things that run on electricity and things that use or conduct electricity.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

Electromagnetic interference Disturbance in an electrical circuit due to external sources of radio waves

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both man-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

Antenna measurement techniques refers to the testing of antennas to ensure that the antenna meets specifications or simply to characterize it. Typical parameters of antennas are gain, bandwidth, radiation pattern, beamwidth, polarization, and impedance.

Test probe

A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.

The laser voltage probe (LVP) is a laser-based voltage and timing waveform acquisition system which is used to perform failure analysis on flip-chip integrated circuits. The device to be analyzed is de-encapsulated in order to expose the silicon surface. The silicon substrate is thinned mechanically using a back side mechanical thinning tool. The thinned device is then mounted on a movable stage and connected to an electrical stimulus source. Signal measurements are performed through the back side of the device after substrate thinning has been performed. The device being probed must be electrically stimulated using a repeating test pattern, with a trigger pulse provided to the LVP as reference. The operation of the LVP is similar to that of a sampling oscilloscope.

Line Impedance Stabilization Network Tool used in emissions testing

A line impedance stabilization network (LISN) is a device used in conducted and radiated radio-frequency emission and susceptibility tests, as specified in various electromagnetic compatibility (EMC)/EMI test standards.

Metamaterial antenna

Metamaterial antennas are a class of antennas which use metamaterials to increase performance of miniaturized antenna systems. Their purpose, as with any electromagnetic antenna, is to launch energy into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often microscopic, structures to produce unusual physical properties. Antenna designs incorporating metamaterials can step-up the antenna's radiated power.

A TEM or transverse electromagnetic cell is a type of test chamber used to perform electromagnetic compatibility (EMC) or electromagnetic interference (EMI) testing. It allows for the creation of far field electromagnetic fields in a small enclosed setting, or the detection of electromagnetic fields radiated within the chamber.

Antenna array

An antenna array is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together to enhance the power radiated in desired directions, and cancelling to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

Slotted line Device used for microwave measurements

Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line. They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.

Microwave imaging is a science which has been evolved from older detecting/locating techniques in order to evaluate hidden or embedded objects in a structure using electromagnetic (EM) waves in microwave regime. Engineering and application oriented microwave imaging for non-destructive testing is called microwave testing, see below.

Explorer 38 NASA satellite of the Explorer program

Explorer 38 was the first NASA satellite to study Radio astronomy. Explorer 38 was launched as part of the Explorer program, being the first of the 2 RAE-satellites. Explorer 38 was launched on 4 July 1968 from Vandenberg Air Force Base, California, with a Delta J launch vehicle.

Common mode current is portion of conductor currents that are unmatched with the exactly opposite and equal magnitude currents. Common mode current cause multiconductors to act or behave like a single conductor. In electromagnetic compatibility (EMC), there are two common terms that will be found in many electromagnetic interference discussions or considered as fundamental concepts, those are Differential Mode and Common Mode. Those terms are related to coupling mechanisms. Many electrical systems contain elements that are capable to act like an antenna. Each element is capable of unintentionally emitting Radio Frequency energy through electric, magnetic, and electromagnetic means. Common Mode coupling as well as Differential Mode coupling can occur in both a conducted and radiated way.

References